История открытия комплексных чисел
Рефераты >> Математика >> История открытия комплексных чисел

В конце XVIII века французский математик Ж. Лагранж смог сказать, что математический анализ уже не затрудняют мнимые величины. С помощью мнимых чисел научились выражать решения линейных дифференциальных уравнений с постоянными коэффициентами. Такие уравнения встречаются, например, в теории колебаний материальной точки в сопротивляющейся среде. Еще раньше швейцарский математик Я. Бернулли применял комплексные числа для решения интегралов.

Хотя в течение XVIII века с помощью комплексных чисел были решены многие вопросы, в том числе и прикладные задачи, связанные с картографией, гидродинамикой и т. д., однако еще не было строго логического обоснования теории этих чисел. По этому французский ученый П. Лаплас считал, что результаты, полученные с помощью мнимых чисел, - только наведение, приобретающее характер настоящих истин лишь после подтверждения прямыми доказательствами.

“Никто ведь не сомневается в точности результатов, получаемых при вычислениях с мнимыми количествами, хотя они представляют собой только алгебраические формы иероглифы нелепых количеств” Л. Карно.

В конце XVIII века, в начале XIX века было получено геометрическое истолкование комплексных чисел. Датчанин К. Вессель, француз Ж. Арган и немец К. Гаусс независимо друг от друга предложили изобразить комплексное число точкой на координатной плоскости. Позднее оказалось, что еще удобнее изображать число не самой точкой M, а вектором , идущим в эту точку из начала координат. При таком истолковании сложение и вычитание комплексных чисел соответствуют эти же операции над векторами. Вектор можно задавать не только его координатами a и b, но так же длиной r и углом j, который он образует с положительным направлением оси абсцисс. При этом , и число z принимает вид , который называется тригонометрической формой комплексного числа. Число r называют модулем комплексного числа z и обозначают . Число называют аргументом z и обозначают ArgZ. Заметим, что если , значение ArgZ не определено, а при оно определено с точностью до кратного . Упомянутая ранее формула Эйлера позволяет записать число z в виде (показательная форма комплексного числа).

Геометрическое истолкование комплексных чисел позволило определить многие понятия, связанные с функцией комплексного переменного, расширило область их применения.

Стало ясно, что комплексные числа полезны во многих вопросах, где имеют дело с величинами, которые изображаются векторами на плоскости: при изучении течения жидкости, задач теории упругости.

После создания теории комплексных чисел возник вопрос о существовании “гиперкомплексных” чисел - чисел с несколькими “мнимыми” единицами. Такую систему вида , где , построил в 1843 году ирландский математик У. Гамильтон, который назвал их “кватернионами”. Правила действия над кватернионами напоминает правила обычной алгебры, однако их умножение не обладает свойством коммутативности (переместительности): например, , а . Гиперкомплексные числа не являются темой моего реферата, поэтому я лишь упоминаю об их существовании.

Большой вклад в развитие теории функций комплексного переменного внесли русские и советские ученые Н. И. Мусхелишвили занимался ее применениями к упругости, М. В. Келдыш и М. А. Лаврентьев - к аэро- и гидродинамике, Н. Н. Богомолов и В. С. Владимиров - к проблемам квантовой теории поля.

Список используемой литературы:

“Энциклопедический словарь юного математика”

“Школьный словарь иностранных слов”

“Справочник по элементарной математике” М. Я Выгодский


Страница: