Интегрирование линейного дифференциального уравнения с помощью степенных рядовРефераты >> Математика >> Интегрирование линейного дифференциального уравнения с помощью степенных рядов
III. Малые возмущения системы линейных уравнений
В этой задаче рассматривается система:
с действительными коэффициентами аij.
Необходимо исследовать фазовые кривые этой системы:
(1)
Сведем систему (1) к системе вида:
(2)
с помощью замены
(3)
Запишем систему (1) в виде
, где (4)
Подставим в систему (4), а в систему (3), тогда получим:
(5)
Найдем собственные значения матрицы А:
,
Систему (2) можно записать в виде:
, где (6)
Из системы (5) и (6) следует, что
Подберем матрицу С такую, что пусть и AC = CB
=
Решив эту систему, получим: a=-2, b=-1, c=1, d=0, т.е. и
Поставим матрицу С в замену:
Подставим полученные значения в систему (2):
, где
При получаем систему
Это уравнение малых колебаний маятника. По теореме о дифференцируемости по параметру при малых e решение (на конечном интервале времени) отличается поправкой порядка e от гармонических колебаний:
Следовательно, при достаточно малом e = e(Т) фазовая точка остается вблизи окружности радиуса А в течении интервала времени Т.
При фазовая кривая не обязательно замкнутая: она может иметь вид спирали, у которой расстояние между соседними витками очень мало (порядка e). Чтобы узнать, приближается ли фазовая кривая к началу координат или уходит от него, рассмотрим приращение энергии за один оборот вокруг начала координат. Нас интересует знак этого приращения: на раскручивающейся спирали приращение положительное, на сжимающейся – отрицательное, а на цикле равно 0. Выведем приближенную формулу:
Подставляя значения и , получим:
Для вычисления энергии за оборот следовало бы проинтегрировать эту функцию вдоль витка фазовой траектории, которая неизвестна. Но виток близок к окружности. Поэтому интеграл можно посчитать с точностью до O() по окружности радиуса А.
Пусть , тогда
для (при малых положительных значениях ), поэтому фазовые точки удаляются от центра, т.е. фазовая кривая раскручивается.
Вектор скорости кривой направлен по часовой стрелке, так как точка с координатами (1,0) переходит в точку (0,-1)
Так как detC>0, то при замене на ориентация системы координат не изменилась.
Литература
1. Лизоркин Г.И. Курс обыкновенных дифференциальных и интегральных уравнений. М.: Наука, 1981, Гл.7. §6. С.344-348.
2. Эльсгольц Г.Э. Дифференциальные уравнения и вариационное исчисление. М.: Наука, 1969, Гл.2. §7.
3. Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. М.: Наука, 1969, Гл.1. §5.
4. Болтянский В.Г. Математические методы оптимального управления. М.: Наука, 1969, Гл.1. §3.
5. Понтрягин Л.С. Обыкновенные дифференциальные уравнения. М.: Наука, 1974, Гл.2. §16.