Индексные системы и их логическая основаРефераты >> Математика >> Индексные системы и их логическая основа
Индекс Стэндарда и Пура (Standard and Poor’s 500 Stock Index) - индекс, рассчитываемый по курсам акций 500 крупнейших компаний Нью-йоркской фондовой биржи как средний взвешенный показатель, учитывающий общее число выпущенных компанией акций. В число компаний, акции которых включены в индекс, входят 400 промышленных корпораций, 40 - финансовых, 20 - транспортных и 40 - сферы услуг.
5. Выбор базы и весов индексов
Выбор базы сравнения и весов индексов - это два важнейших методологических вопроса построения социально-экономических явлений за некоторый интервал времени, включающий более двух периодов времени.
Системой индексов называется ряд последовательно построенных индексов. Такие системы характеризуют изменения, происходящие в изучаемом явлении в течение исследуемого периода времени.
В зависимости от базы сравнения системы индексов бывают базисными и цепными.
Система базисных индексов - это ряд последовательно вычисленных индексов одного и того же явления с постоянной базой сравнения, т.е. в знаменателе всех индексов находится индексируемая величина базисного периода.
Система цепных индексов - это ряд индексов одного и того же явления, вычисленных с меняющейся от индекса к индексу базой сравнения.
В экономико-статистических исследованиях выбор системы индексов (базисные или цепные) проводится в зависимости от цели анализа. Базисные индексы дают более наглядную характеристику общей тенденции развития исследуемого явления, а цепные - четче отражают последовательность изменения уровней во времени.
Системы цепных и базисных индексов могут быть построены для индивидуальных и общих индексов. Системы индивидуальных индексов стоимости продукции, физического объема продукции и цен просты по построению. Аналогично им строятся системы индивидуальных индексов и для других показателей.
Системой индексов с постоянными весами называется система сводных индексов одного и того же явления, вычисленных с весами, не меняющимися при переходе от одного индекса к другому. Постоянные веса позволяют исключить влияние изменения структуры на величину индекса.
Система индексов с переменными весами представляет собой систему сводных индексов одного и того же явления, вычисленных с весами, последовательно меняющихся от одного индекса к другому. Переменные веса - это веса отчетного периода.
6. Индексы структурных сдвигов
При изучении динамики качественных показателей приходится определять изменение средней величины индексируемого показателя, которое обусловлено взаимодействием двух факторов - изменением значения индексируемого показателя у отдельных групп единиц и изменением структуры явления. Под изменением структуры явления понимается изменение доли отдельных групп единиц совокупности в общей из численности. Так, средняя заработная плата на предприятии может вырасти в результате роста оплаты труда работников или увеличения доли высокооплачиваемых сотрудников. Снижение трудоемкости производства единицы продукции по совокупности предприятий отрасли может быть обусловлено повышением производительности труда на предприятиях или концентрацией производства продукции на заводах с низкой трудоемкостью. Так как на изменение среднего значения показателя оказывают воздействие два фактора, возникает задача определить степень влияния каждого из факторов на общую динамику средней.
Эта задача решается с помощью индексного метода, т.е. путем построения системы взаимосвязанных индексов, в которую включаются три индекса: переменного состава, постоянного состава и структурных сдвигов.
Индексом переменного состава называется индекс, выражающий соотношение средних уровней изучаемого явления, относящихся к разным периодам времени. Например, индекс переменного состава себестоимости продукции одного и того же вида рассчитывается по формуле:
,
где - индекс переменного состава.
Индекс переменного состава отражает изменение не только индексируемой величины (в данном случае себестоимости), но и структуры совокупности (весов).
Индекс постоянного (фиксированного) состава - это индекс, исчисленный с весами, зафиксированными на уровне одного какого-либо периода, и показывающий изменение только индексируемой величины. Индекс фиксированного состава определяется как агрегатный индекс. Так, индекс фиксированного состава себестоимости продукции рассчитывают по формуле:
,
где - индекс фиксированного состава.
Под индексом структурных сдвигов понимают индекс, характеризующий влияние изменения структуры изучаемого явления на динамику среднего уровня этого явления. Индекс определяется по формуле (при изучении изменения среднего уровня этого явления. Индекс определяется по формуле (при изучении изменения среднего уровня себестоимости):
,
где - индекс структурных сдвигов.
7. Важнейшие экономические индексы и их взаимосвязи
Между важнейшими индексами существуют взаимосвязи, позволяющие на основе одних индексов получать другие. Зная, например, значение цепных индексов за какой-либо период времени можно рассчитать базисные индексы. И наоборот, если известны базисные индексы, то путем деления одного из них на другой можно получить цепные индексы.
Существующие взаимосвязи между важнейшими индексами позволяют выявить влияние различных факторов на изменение изучаемого явления, например связь между индексом стоимости продукции, физического объема продукции и цен. Другие индексы также связаны между собой. Так, индекс издержек производства - это произведение индекса себестоимости продукции и индекса физического объема продукции:
.
Индекс затрат времени на производство продукции может быть получен в результате умножения индекса физического объема продукции и величины, обратной величине индекса трудоемкости, т.е. индекс производительности труда:
.
Существует важная взаимосвязь между индексами физического объема продукции и индексом производительности труда.
Индекс производительности труда рассчитывается на основе следующей формулы:
,
т.е. представляет собой отношение средней выработки продукции (в сопоставимых ценах) в единицу времени (или на одного занятого) в текущем и базисном периодах.
Индекс физического объема продукции равен произведению индекса производительности труда на индекс затрат рабочего времени (или численности занятых):