Двойственный симплекс-метод и доказательство теоремы двойственности
Рефераты >> Математика >> Двойственный симплекс-метод и доказательство теоремы двойственности

4. Виды математических моделей двойственных задач

На основании рассмотренных несимметричных и симметричных двойственных задач можно заключить, что математические модели пары двойственных задач могут иметь один из следующих видов.

Н е с и м м е т р и ч н ы е з а д а ч и

(1) Исходная задача Двойственная задача

Zmin = CX; fmax = YA0;

AX = A0; YA £ С.

X ³ 0.

(2) Исходная задача Двойственная задача

Zmax = CX; fmin = YA0;

AX = A0; YA ³ С.

X ³ 0.

С и м м е т р и ч н ы е з а д а ч и

(3) Исходная задача Двойственная задача

Zmin = CX; fmax = YA0;

AX ³ A0; YA £ С.

X ³ 0. Y ³ 0.

(4) Исходная задача Двойственная задача

Zmax = CX; fmin = YA0;

AX £ A0; YA ³ С.

X ³ 0. Y ³ 0.

Таким образом, прежде чем записать двойственную задачу для данной исходной, систему ограничений исходной задачи необходимо привести к соответствующему виду. Запишем, например, математиче­скую модель двойственной задачи для следующей исходной.

Найти минимальное значение линейной функции Z = 2x1 + x2 + 5x3 при ограничениях

x1 – x2 – x3 £ 4,

x1 – 5x2 + x3 ³ 5, xj ³ 0 (j = 1, 2, 3).

2x1 – x2 + 3x3 ³6,

Рассматриваемая задача относится к симметричным двойственным задачам на отыскание минимального значения линейной функции. Для того чтобы было можно записать двойственную задачу, ее модель долж­на иметь вид (3). Переход осуществляется умножением первого не­равенства на -1.

Исходная задача:

Zmin = 2x1 + x2 + 5x3 при ограничениях

-x1 + x2 + x3 ³ -4,

x1 – 5x2 + x3 ³ 5, xj ³ 0 (j = 1, 2, 3).

2x1 – x2 + 3x3 ³6,

Двойственная задача:

fmin = -4x1 + 5x2 + 6x3 при ограничениях

-y1 + y2 + 2y3 £ 2,

y1 – 5y2 - y3 £ 1, yi ³ 0 (i = 1, 2, 3).

2y1 + y2 + 3y3 £ 5,

Приведем без доказательства следующую теорему. Теорема 1.1. Если при подстановке компонент оптимального пла­на в систему ограничений исходной задачи i-e ограничение обращается в неравенство, то i-я компонента оптимального плана двойственной задачи равна нулю.

Если i-я компонента оптимального плана двойственной задачи по­ложительна, то i-e ограничение исходной задачи удовлетворяется ее оптимальным решением как строгое равенство.

5. Двойственный симплексный метод

В п. 2 и п. 3 настоящего параграфа было показано, что для получения решения исходной задачи можно перейти к двой­ственной и используя оценки ее опти­мального плана, определить оптимальное решение исходной задачи.

Переход к двойственной задаче не обязателен, так как если рассмо­треть первую симплексную таблицу с единичным дополнительным ба­зисом, то легко заметить, что в столбцах записана исходная задача, а в строках - двойственная. Причем оценками плана исходной задачи являются Сj а оценками плана двойственной задачи – bi. Решим "двойственную задачу по симплексной таблице, в которой записана ис­ходная задача; найдем оптимальный план двойственной задачи, а вместе с ним и оптимальный план исходной задачи. Этот метод носит на­звание двойственного симплексного метода,

Пусть необходимо решить исходную задачу линейного программиро­вания, поставленную в общем виде: минимизировать функцию Z =СХ при АХ = A0, Х ³ 0. Тогда в двойственной задаче необходимо максимизировать функцию f = YA0 при YA £ С. Допустим, что выбран такой базис D = (A1, А2, ., Аi, ., Аm), при котором хотя бы одна из компонент вектора Х = D-1 A0 = (x1, x2, ., xi, ., xm) отрицатель­ная (например, xi < 0), но для всех векторов Aj выполняется соотно­шение Zj – Cj £ 0 (i = 1,2, ., n). Тогда на основании теоремы двойственности Y = Сбаз D-1 - план двойственной задачи. Этот план не оптимальный, так как, с одной стороны, при выбранном бази­се X содержит отрицательную компоненту и не является планом исходной задачи, а с другой стороны, оценки оптимального плана двой­ственной задачи должны быть неотрицательными.

Таким образом, вектор Аi, соответствующий компоненте xi < 0, следует исключить из базиса исходной задачи, а вектор, соответствую­щий отрицательной оценке,— включить в базис двойственной задачи.

Для выбора вектора, включаемого в базис исходной задачи, просмат­риваем i-ю строку: если в ней не содержатся xij < 0, то линейная функция двойственной задачи не ограничена на многограннике реше­ний, а исходная задача не имеет решений. Если же некоторые xij < 0, то для столбцов, содержащих эти отрицательные значения, вычисля­ем q0j= min (xi/xij) ³ 0 и определяем вектор, соответствующий max q0j(Zj — Cj) при решении исходной задачи на минимум и min q0j(Zj — Cj) при решении исходной задачи на максимум. Этот вектор и включаем в базис исходной задачи. Вектор, который необ­ходимо исключить из базиса исходной задачи, определяется направ­ляющей строкой.

Если q0j= min (xi/xij) = 0, т. е. xi = 0, то xij берется за раз­решающий элемент только в том случае, если xij > 0. Такой выбор раз­решающего элемента на данном этапе не приводит к увеличению коли­чества отрицательных компонент вектора X. Процесс продолжаем до получения Х ³ 0; при этом находим оптимальный план двойственной задачи, следовательно, и оптимальный план исходной задачи.

В процессе вычислений по алгоритму двойственного симплексного метода условие Zj – Cj £ 0 можно не учитывать до исключения всех хi < 0, затем оптимальный план находится обычным симплексным ме­тодом. Это удобно использовать, если все хi < 0; тогда для перехода к плану исходной, задачи за одну итерацию необходимо q0j определить не по минимуму, а по максимуму отношений, т. е. q0j= max (xi/xij) > 0.

Двойственным симплексным методом можно решать задачи линей­ного программирования, системы ограничений которых при положи­тельном базисе содержат свободные члены любого знака. Этот метод позволяет уменьшить количество преобразований системы ограниче­ний, а также размеры симплексной таблицы.

6. Список используемой литературы

1. Солодовников А.С., Бабайцев В.А., Браилов А.В. Математика в экономике. «Финансы и статистика», 1998 г.

2. Кузнецов Ю.Н., Кузубов В.И., Волощенко А.Б. Математическое программирование. «Наука», 1980 г. <


Страница: