Возникнновение числа
Рефераты >> Математика >> Возникнновение числа

В своей книге «Ключ арифметики», написанной в 1427 г., ал-Каши пишет: «Астрономы применяют дроби, последовательными знаменателями которых являются 60 и его последовательные степени… По аналогии мы ввели дроби, в которых последовательными знаменателями являются 10 и его последовательные степени…».

Ал-Каши называет сотые доли «десятичными секундами», тысячные – «десятичными терциями» и т.д. Термины эти заимствованы из шестидесятеричной нумерации. Вводя десятичные дроби, ал-Каши поставил себе задачу создать простую и удобную систему дробей, основанную на десятичной нумерации и имеющую те же преимущества, которые имели для вавилонян шестидесятеричные дроби.

Ал-Каши излагает правила и приводит примеры действий с десятичными дробями. Оно вводит специфическую для десятичных дробей запись: целая и дробная часть пишутся в одной строке. Для отделения первой части от дробной он не применяет запятую[1], а пишет целую часть черными чернилами, дробную же – красными или отделяет целую часть от дробной вертикальной чертой.

Открытие десятичных дробей ал-Каши стало известно в Европе лишь спустя 300 лет после того, как эти дроби были в конце XVI в. заново открыты С. Стевиным[2].

Фламандский инженер и ученый Симон Стевин (1548-1620), около 150 лет после ал-Каши, изложил учение о десятичных дробях в Европе. В 1585 г. он написал небольшую книгу под названием «Десятая».

Эта книга состояла всего лишь из 7 страниц, однако содержала всю теорию десятичных дробей.

Запись десятинных дробей у Стевина была отличной от нашей. Вот,например, как он записывал число 35,912:

35 0 9 1 1 2 2 3 или

Итак, вместо запятой нуль в кружке. В других кружках или над цифрами указывается десятичный разряд: 1 – десятые, 2 – сотые и т.д.

Стевик указывал на большое практическое значение десятичных дробей и настойчиво пропагандировал их. Он был первым ученым, потребовавшим введения десятичной системы мер и весов. Эта мечта ученого была осуществлена лишь спустя свыше 200 лет, когда была создана метрическая система мер.

Дробь общего вида. Дроби общего вида , в которых и m, и n могут быть произвольными целыми числами, появляются уже в некоторых сочинениях Архимеда. Простейшие из таких дробей (2/3, 3/4) постепенно входят в употребление в житейской практике. Индусы уже в первые века нашего летосчисления установили современные правила действий над обыкновенными дробями. Эти правила через руководство среднеазиатских математиков – ал-Хорезми и других – вошли в европейские учебники арифметики. Это случилось ранее распространения десятичных дробей.

В «Арифметики» (1703) первого русского педагога-математика Леонтия Филипповича Магницкого (1669-1739) обыкновенные дроби излагаются подробно, десятичные же дроби – в специальной главе, как некоторый новый вид счисления, не имевшего при тогдашней системе мер большого практического значения. Только с введением метрической (десятичной) системы мер десятыми дроби заняли подобающее место в нашем обиходе.

2.3. Рациональные числа

Числа целые, дробны (положительные и отрицательные) и нуль получили общее название рациональных чисел. Совокупность рациональных чисел обладает свойством замкнутости по отношению к четырем арифметическим действиям. Это значит, что сумма, разность, произведение и частное (кроме частного при делении на нуль, к-ое не имеет смысла) любых двух рациональных чисел является снова рациональным числом. Совокупность рациональных чисел упорядочена в отношении понятий «больше» и «меньше». Далее, совокупность рациональных чисел обладает свойством плотности: между любыми двумя различными рациональными числами находится бесконечно много рациональных чисел. Это даёт возможность при помощи рациональных чисел осуществлять измерение (например, длины отрезка в выбранной единице масштаба) с любой степенью точности. Таком образом, совокупность рациональных чисел оказывается достаточной для удовлетворения многих практических потребностей. Формальное обоснование понятий дробного и отрицательного числа было осуществлено в 19 в. и не представило, в отличие от обоснования натурального числа, принципиальных затруднений.

Совокупность рациональных чисел оказалась недостаточной для изучения непрерывно изменяющихся переменных величин. Здесь оказалось необходимым новое расширение понятий числа, заключающееся в переходе от множества рациональных чисел к множеству действительных (вещественных) чисел. Этот переход состоит в присоединении к рациональным числам т.н. иррациональных чисел.

[1] Запятая вообще, как знак препинания, была введена на рубеже XV и XVI вв. венецианским типографом Альф Мануцци. Он же стал прилагать к книгам оглавление

[2] До Симона Стевина десятичные дроби употребляли Рудольфом, Ризе и Виет. Виет явно рекомендовал применять десятичные дроби вместо шестидесятеричных. Число 314, 1592636, например, Виет записывал так: 314, 159, 263,6.


Страница: