Великие математики второй половины XVII столетия
Рефераты >> Математика >> Великие математики второй половины XVII столетия

Диофант стал доступным для читающих на латинском языке в 1621 г.). В своем экземпляре этого перевода Ферма сделал свои знаменитые заметки на полях (опубликованы сыном Ферма в 1670 г.). Среди них мы находим «великую» теорему Ферма о том, что уравнение х n + у n = z n невозможно при целых положительных значениях х, у, z, если п > 2,— в 1847 г. это привело Куммера к его теории идеальных чисел. Доказательства, пригодного для всех п, до сих пор нет, хотя теорема несомненно верна для большого числа значений n2.

Ферма написал на полях против 8-й задачи II книги Диофанта «Разделить квадратное число на два других квадратных числа» следующие слова: «Разделить куб на два других куба, четвертую степень или вообще какую-либо степень выше второй на две степени с тем же обозначением невозможно, и я нашел воистину замечательное доказательство этого, однако поля слишком узки, чтобы поместить его». Если Ферма имел такое замечательное доказательство, то за последующие три столетия напряженных исследований такое доказательство не удалось получить. Надежнее допустить, что даже великий Ферма иногда ошибался.

В другой заметке на полях Ферма утверждает, что простое число Вида 4n +1 может быть одним и только одним образом представлено как сумма двух квадратов. Эту теорему позже доказал Эйлер. Еще одна «теорема Ферма», которая утверждает, что a p - 1 - 1 делится на р, когда р – простое число и а не делится на р.

Ферма и Паскаль стали основателями математической теории вероятностей. Постепенное формирование интерес к задачам, связанным с вероятностями, происходило прежде всего под влиянием развития страхового дела, но те частные вопросы, которые побудили больших математиков поразмыслить над этим предметом, были поставлены в связи с играми в кости и в карты.

Вопросы, связанные с вычислением вероятности результата при различных играх, не раз ставились в средневековой литературе за столетия до того, как Мере обратился к Паскалю, и решались иной раз верно, иной раз неверно. В частности, среди ближайших предшественников Паскаля и Ферма — Тарталья и Галилей. Но решение таких вопросов могло стать поводом для создания особой теории, затем целой математической дисциплины только под влиянием серьезных запросов практики

Блез Паскаль был сыном Этьена Паскаля, корреспондента Мерсенна; кривая «улитка Паскаля» названа в честь Этьена. Блез быстро развивался под присмотром своего отца, и уже в шестнадцатилетнем возрасте он открыл «теорему Паскаля» о шестиугольнике, вписанном в коническое сечение. Эта теорема была опубликована в 1641 г. на одном листе бумаги и повлияла на Дезарга. Через несколько лет Паскаль изобрел счетную машину. Когда ему было двадцать пять лет, он решил поселиться как янсенист в монастыре Пор-Рояль и вести жизнь аскета, но продолжал при этом уделять время науке и литературе. Его трактат об «арифметическом треугольнике», образованном биномиальными коэффициентами и имеющем применение в теории вероятностей, появился посмертно в 1664 г. Мы уже упоминали о его работах по интегрированию и о его идеях относительно бесконечного и бесконечно малого, которые оказали влияние на Лейбница. Паскаль первый придал удовлетворительную форму принципу полной индукции

Жерар Дезарг был архитектором в Лионе. Он автор книги о перспективе (1636 г.). Его брошюра с любопытным названием «Первоначальный набросок попытки разобраться в том, что получается при встрече конуса с плоскостью», 1639 г.) содержит некоторые из основных понятий синтетической геометрии такие, как точки на бесконечности, инволюции, полярные соотношения,— все это на курьезном ботаническом языке. Свою «теорему Дезарга» о перспективном отображении треугольников он обнародовал в 1648 г. Плодотворность этих идей в полной мере раскрылась лишь в девятнадцатом столетии.

Общий метод дифференцирования и интегрирования, построенный с полным пониманием того, что один процесс является обратным по отношению к другому, мог быть открыт только такими людьми, которые овладели как геометрическим методом греков и Кавальери, так и алгебраическим методом Декарта и Виллиса. Такие люди могли появиться лишь после 1660 г., и они действительно появились в лице Ньютона и Лейбница. Очень много написано по вопросу о приоритете этого открытия, но теперь установлено, что оба они открыли свои методы независимо друг от друга. Ньютон первым открыл анализ (в 1665— 1666 гг.), Лейбниц в 1673—1676 гг., но Лейбниц первый выступил с этим в печати (Лейбниц в 1684—1686 гг., Ньютон в 1704—1736 г. г. (посмертно)). Школа Лейбница была гораздо более блестящей, чем школа Ньютона.

Исаак Ньютон был сыном землевладельца в Линкольншире. Он учился в Кембридже, возможно, что у Исаака Барроу, который в 1669 г. передал ему свою профессорскую кафедру (примечательное явление в академической жизни), так как Барроу открыто признал превосходство Ньютона. Ньютон оставался в Кембридже до 1696 г., когда он занял пост инспектора, а позже начальника монетного двора. Его исключительный авторитет в первую очередь основан на его «Математических принципах натуральной философии» (Philisophiae naturalis principia mathematica, 1687 г.), огромном томе, содержащем аксиоматическое построение механики и закон тяготения — закон, управляющий падением яблока на землю и движением Луны вокруг Земли. Ньютон строго математически вывел эмпирически установленные законы Кеплера движения планет из закона тяготения обратно пропорционально квадрату расстояния и дал динамическое объяснение приливов и многих явлений при движении небесных тел. Он решил задачу двух тел для сфер и заложил основы теории движения Луны. Решив задачу о притяжении сфер, он тем самым заложил основы и теории потенциала. Его аксиоматическая трактовка требовала абсолютности пространства и абсолютности времени.

Открытие Ньютоном флюксий стоит в тесной связи с его изучением бесконечных рядов по «Арифметике» Валлиса. При этом Ньютон обобщил биномиальную теорему на случаи дробных и отрицательных показателей и таким образом открыл биномиальный ряд.

Ньютон писал также о конических сечениях и о плоских кривых третьего порядка. В «Перечислении линий третьего порядка» (Enumeratio linearum tertii ordinis, 1704 г.) он дал классификацию плоских кривых третьей степени на 72 вида, исходя из своей теоремы о том, что каждую кубическую кривую можно получить из «расходящейся параболы»y2 = ax3 + bx2 + cx + d при центральном проектировании одной плоскости на другую. Это было первым важным новым результатом, полученным путем применения алгебры к геометрии, так как все предыдущие работы были просто переводом Аполлония на алгебраический язык Ньютону принадлежит также метод получения приближенных значений корней численных уравнении, который он разъяснил на примере уравнения x3 - 2 x - 5 = 0, получив х »2,09455147.

Готфрид Вильгельм Лейбниц родился в Лейпциге, а большую часть жизни провел при ганноверском дворе, на службе у герцогов, один из которых стал английским королем под именем Георга I.


Страница: