Введение во фракталыРефераты >> Математика >> Введение во фракталы
Несложно написать программу для построения множества Мандельброта. Единственная проблема, которая может возникнуть при использовании этой программы на маломощных ЭВМ --- большой объем вычислений. Для того, чтобы получить приемлемое изображение множества, желательно отображать по меньшей мере 256x256 пикселов. Более удачные визуализации получаются при использовании окна 400x400 пикселов и более. При этом количество итераций достаточно 20-ти. Для получения более качественного построения множества можно увеличить количество итераций до 50, 70, 100 и более.
Рис 4.2.1 Область 3-периодичности множества Мандельброта
Рис. 4.2.2. Множество Жюлиа.
5. ЗАКЛЮЧЕНИЕ.
Данная курсовая работа является введением в мир фракталов. Мы рассмотрели только самую малую часть того, какие бывают фракталы, на основе каких принципов они строятся. Например в книгу [1] включено рассмотрение СИФ (систем итерированных функций), случайных фракталов, и многое другое из теории фракталов.
В дополнение хочется отметить применение фракталов в компьютерных технологиях, помимо просто построения красивых изображений на экране компьютера. Фракталы в компьютерных технологиях применяются в следующих областях:
1. Сжатие изображений и информации
2. Сокрытие информации на изображении, в звуке,…
3. Шифрование данных с помощью фрактальных алгоритмов
4. Создание фрактальной музыки
5. Моделирование систем
6. СПИСОК ЛИТЕРАТУРЫ
1. Фракталы и хаос в динамических системах. Основы теории. Москва: Постмаркет, 2000. – 352 с.
2. Программа FractInt © 1990 Soup Group Company.
3. James Gleick, Chaos: Making a New Science, Viking, New York, 1987.
[1] Исследование аттрактора Лоренца включается сейчас в любой
математический пакет, например, Mathematica, Maple.