Фигуры категорического силлогизма
Третья фигура применяется для опровержения общих утверждений. Если бы, например, кто-либо стал утверждать что все металлы тонут в воде А(SP), то для опровержения этого утверждения можно построить такой силлогизм этой фигуры: “Калий не тонет в воде, калий - металл. Следовательно некоторые металлы не тонут в воде.”. Из истинности заключения этого силлогизма - O(SP) - следует ложность опровергаемого общего утверждения - A(SP).
Первое правило четвертой фигуры исключает такие сочетания посылок - AI, II, AO. Второе правило устраняет все сочетания четвертого столбца, а также IE и IO из третьего столбца. Посылки ЕЕ и ЕО из второго столбца исключаются по общему правилу, поскольку они обе отрицательные. Таким образом, остаются сочетания АА, АЕ, IA, EA, EI из которых получаем модусы - AAI, AEE, IAI, EAO, EIO. Из посылок АА и ЕА нельзя получить общее заключение, поскольку термин S в меньшей утвердительной посылке будет не распределен. Из посылок АЕ можно получить ослабленный модус АЕО.
Модусы фигур
Для облегчения запоминания правильных модусов всех фигур в ХIII веке было составлено особое мнемоническое стихотворение. Его слова непереводимы, но их гласные буквы обозначают модусы соответствующих фигур.
Первая фигура
AAA - Barbara
EAE - Celarent
AII - Darii
EAI - Ferio
AAI - Barbari
EAO - Celaront
Вторая фигура
EAE - Cesare
AEE - Camestres
EIO - Festino
AOO - Baroco
EAO - Cesaro
AEO - Cameostro
Третья фигура
AAI - Darapti
IAI - Disamis
AII - Datisi
EAO - Felapton
OAO - Bocardo
EIO - Ferison
Четвертая фигура
AAI - Bramantip
AEE - Camenes
IAI - Dimaris
EAO - Fesapo
EIO - Fresison
AEO - Cameno
Таким образом, все четыре фигуры имеют 19 правильных модусов.
Согласные буквы этих латинских слов также имеют определенный смысл.
Они указывают на те логические операции, с помощью которых модусы второй, третьей и четвертой фигур можно свести к определенному модусу первой фигуры, в которой очевидна применимость аксиомы силлогизма.
Начальные согласные названий модусов (B, C, D, F) показывают те модусы первой фигуры, которые получаются в результате такого сведения. Так Cesare, Camestres, Camenes второй и четвертой и фигур сводятся к Celarent.
Буква “s” показывает, что высказывание, обозначенное гласной, после которой стоит эта буква, должно подвергнуться чистому (простому) обращению. Буква “p” обозначает, что высказывание, обозначенное этой буквой, нужно обращать с ограничением. Буква “m” обозначает, что посылки нужно поменять местами. Буква “с” указывает, что данный модус может быть сведен к соответствующему модусу первой фигуры при помощи метода приведения к абсурду.
Литература
1. Горский Д.П. Логика. -М. Ж Учпедгиз, 1963 - 292 с.
2. Мельников В.Н. Логические задачи. Высш. школа 1989 - 343 с.
3. Гетманова А.Д. Логика. -М. Высш. школа 1986. - 286 с.