Структура доказательства
Рефераты >> Логика >> Структура доказательства

Примеров доказательства «от противного» очень много в

Журнал «Бурда». М., 1989. № 1. С. 2.

школьном курсе математики. Так, например, доказывается теорема о том, что из точки, лежащей вне прямой, на эту прямую можно опустить лишь один перпендикуляр. Методом «от противного» доказывается и следующая теорема: «Если две прямые перпендикулярны к одной и той же плоскости, то они параллельны». Доказательство этой теоремы прямо начинается словами: «Предположим противное, т. е. что прямые АВ и СД не параллельны».

Разделительное доказательство (методом исключения). Анти­тезис является одним из членов разделительного суждения, в котором должны быть обязательно перечислены все возможные альтернативы, например:

Преступление мог совершить либо Л, либо В, либо С. Доказано, что не совершали преступление ни А, ни В. Преступление совершил С.

Истинность тезиса устанавливается путем последовательного доказательства ложности всех членов разделительного суждения, кроме одного.

Здесь применяется структура отрицающе-утверждающего мо­дуса разделительно-категорического силлогизма. Заключение будет истинным, если в разделительном суждении предусмотрены все возможные случаи (альтернативы), т. е. если оно является закрытым (полным) дизъюнктивным суждением:

avfevcvcf; а л ? л с d

Как отмечалось ранее, в этом модусе союз «или» может употребляться и как строгая дизъюнкция (v), и как нестрогая дизъюнкция (v), поэтому ему отвечает также схема:

а v и v с v rf; а л 6 л с d.

§ 3. Понятие опровержения

Опровержение — логическая операция установления ложности или необоснованности ранее выдвинутого тезиса.

Опровержение должно показать, что: 1) неправильно построено само доказательство (аргументы или демонстрация); 2) выдвину­тый тезис ложен или не доказан.

Суждение, которое надо опровергнуть, называется тезисом опровержения. Суждения, с помощью которых опровергается тезис, называются аргументами опровержения.

Существуют три способа опровержения: I) опровержение те­зиса (прямое и косвенное); II) критика аргументов; III) выявле­ние несостоятельности демонстрации.

I. Опровержение тезиса (прямое и косвенное)

Опровержение тезиса осуществляется с помощью следующих трех способов (первый — прямой способ, второй и третий — косвенные способы).

1. Опровержение фактами — самый верный и успешный способ опровержения. Ранее говорилось о роли подбора фактов, о методике оперирования ими; все это должно учитываться и в процессе опровержения фактами, противоречащими тезису. Долж­ны быть приведены действительные события, явления, статисти­ческие данные, которые противоречат тезису, т. е. опровергаемому суждению. Например, чтобы опровергнуть тезис «На Венере возможна органическая жизнь», достаточно привести такие дан­ные: температура на поверхности Венеры 470—480° С, а давле­ние — 95—97 атмосфер. Эти данные свидетельствуют о том, что жизнь на Венере невозможна,

2. Устанавливается ложность (или противоречивость) след­ствий, вытекающих из тезиса. Доказывается, что из данного тезиса вытекают следствия, противоречащие истине. Этот прием называется «сведение к абсурду» (reductio ad absurdum). Посту­пают так: опровергаемый тезис временно признается истинным, но затем из него выводятся такие следствия, которые противоречат истине.

В классической двузначной логике (как уже отмечалось) метод «сведения к абсурду» выражается в виде формулы: а = а -» F,

где F — противоречие или ложь.

В более общей форме принцип «сведения (приведения) к абсурду» выражается такой формулой: (а - Ь) - ((а -» Ъ) - а).

3. Опровержение тезиса через доказательство антитезиса. По отношению к опровергаемому тезису (суждению а) выдвигается противоречащее ему суждение (т. е. не-а), и суждение не-а (антитезис) доказывается. Если антитезис истинен, то тезис ложен, и третьего не дано по закону исключенного третьего.

Например, надо опровергнуть широко распространенный тезис: » «Все собаки лают» (суждение А, общеутвердительное). Для

суждения А противоречащим будет суждение О —частноотрица-тельное: «Некоторые собаки не лают». Для доказательства по­следнего достаточно привести несколько примеров или хотя бы один пример: «Собаки у пигмеев никогца не лают»'. Итак, доказано суждение О. В силу закона исключенного третьего, если О — истинно, то А — ложно. Следовательно, тезис опровергнут.

II. Критика аргументов

Подвергаются критике аргументы, которые были выдвинуты оппонентом в обоснование его тезиса. Доказывается ложность или несостоятельность этих аргументов.

Ложность аргументов не означает ложности тезиса: тезис может оставаться истинным:

а -* Ь. а _ Вероятно, Ь

Нельзя достоверно умозаключать от отрицания основания к отрицанию следствия. Но бывает достаточно показать, что тезис не доказан. Иногда бывает, что тезис истинен, но человек не может подобрать для его доказательства истинные аргументы. Случается и так, что человек не виновен, но не имеет достаточных аргументов для доказательства этого. В ходе опровержения аргу­ментов следует об этих случаях помнить.

III. Выявление несостоятельности демонстрации

Этот способ опровержения состоит в том, что показываются ошибки в форме доказательства. Наиболее распространенной ошиб­кой является та, что истинность опровергаемого тезиса не вытека­ет, не следует из аргументов, приведенных в подтверждение тезиса. Доказательство может быть неправильно построенным, если нару­шено какое-либо правило дедуктивного умозаключения или сдела­но «поспешное обобщение», т. е. неправильное умозаключение от истинности суждения I к истинности суждения А (аналогично, от истинности суждения О к истинности суждения Е).

Но обнаружив ошибки в ходе демонстрации, мы опровергаем ее ход, но не опровергаем сам тезис. Задача же доказательства истинности тезиса лежит на том, кто его выдвинул.

Часто все перечисленные способы опровержения тезиса, аргу-

По материкам истранам- М., 1981. С. 79.

ментов, хода доказательства применяются не изолированно, а в сочетании друг с другом.

§ 4. Правила доказательного рассуждения. Логические ошибки, встречающиеся в доказательствах и опровержениях

Если будет нарушено хотя бы одно из перечисленных ниже правил, то могут произойти ошибки относительно доказываемого тезиса, ошибки по отношению к аргументам и ошибки в форме доказательства.

Правила по отношению к тезису

1). Тезис должен быть логически определенным, ясным и точным. Иногда люди в своем выступлении, письменном заявле­нии, научной статье, докладе, лекции не могут четко, ясно, однозначно сформулировать тезис. Так, выступающий на собрании не может четко сформулировать основные положения своего выступления и потому веско аргументировать их перед слушате­лями. И слушатели недоумевают, зачем он выступал в прениях и что хотел им доказать.

2). Тезис должен оставаться тождественным, т. е. одним и тем же, на протяжении всего доказательства или опровержения. Нарушение этого правила ведет к логической ошибке — «подмене тезиса».

Ошибки относительно доказываемого тезиса


Страница: