Этапы определения АК последовательности в пептидах. Синтез белка
Рефераты >> Химия >> Этапы определения АК последовательности в пептидах. Синтез белка

Предварительное освобождение каждого анализируемого пептида от примесей других.

1. Идентификация NH2- и СООН - концевых остатков.

2. Расщепление с помощью трипсина неповрежденной цепи на ряд более коротких пептидов (фрагментов).

3. Разделение фрагментов пептидов при помощи электрофореза или хроматографии.

4. Определяют NH2- и СООН- группы фрагментов.

5. Более длинные фрагменты анализируют, устанавливая первичную структуру.

6. Подвергают полипептид частичному гидролизу (химотрипсин, пепсин)

7. Сопоставляют аминокислотный состав в двух наборах пептидных компонентов.

Определена АК последовательность бычьего инсулина, молекула которого состоит из двух полипептидных цепей, содержащих А-21 и В-30 аминокислотных остатков, эти две цепи поперечно связаны -S-S- мостиками и имеют еще один такой мостик внутри цепи. также расшифрованы адренокортикотропин, рибонуклеаза, гемоглобин.

Видовая специфичность АК - инсулин у животных и человека. Цитохром С - белок переносчик электронов у всех животных, растений и микроорганизмов.

В настоящее время для количественного определения АК применяется реакция их с нингидрином. В первой стадии реакции нингидрин восстанавливается. В результате образуется аммиак, который во второй стадии реагирует с нингидрином, образуя сине-фиолетовый продукт, интенсивность окраски которого (570 нм) пропорциональна количеству АК.

На основе нингидриновой реакции разработан метод хроматографии распределения на бумаге. Эта же реакция используется и в автоматическом анализаторе АК: после разделения на колонке, заполненной специальными ионообменными смолами, элюент из колонки поступает в смеситель, туда же поступает раствор нингидрина, интенсивность окраски измеряется на спектрофотометре и записывается в виде пиков. Смесь АК успешно разделяется и методом электрофореза на бумаге. При рН=6,0 хорошо разделяются кислые и основные АК с нейтральными. Отрицательно заряженные АК двигаются к аноду, а положительно - к катоду, нейтральные остаются на старте. После электрофореза АК выявляют с помощью химических реакций.

Наиболее богаты белковыми веществами ткани и органы животных. Источником белка являются также микроорганизмы и растения. В теле человека белки составляют 45% сухой массы. Помимо углерода (50-54%), кислорода (21,5-23,5%) и водорода (6,5-7,3%), входящих в состав почти всех органических полимерных молекул, обязательным компонентом белков являются азот (15-17%), сера (0,3-2,5%) , в небольших количествах содержатся железо, марганец, фосфор, магний, йод.

Для исследования свойств белков, также как и для изучения их химического состава и строения необходимо получение их в химически индивидуальном состоянии.

Белковые вещества чувствительны к повышению температуры и к действию большинства химических реагентов. Белки выделяют при низкой (+4о С) температуре. Органы и ткани животных измельчают, гомогенизируют. Большинство белков тканей хорошо растворимы в 8-10% растворах солей. Для экстракции белков применяются буферные смеси с определенными значениями рН среды. Разделение смеси белков - фракционирование. Для этого используют различные методы: высаливание, хроматографию, гель-фильтрацию, электрофорез, ультрацентрифугирование и т.д.

Таким образом, основная структурная единица белка - мономер- аминокислота. Белки - высокомолекулярные, N-содержащие биомолекулы, состоящие в основном из аминокислот. Молекулярная масса белков колеблется от 6000 до 1000000 и выше дальтон.

У огромного количества белков химическое строение не выяснено, поэтому основными методами для определения молекулярной массы являются методы седиментационного анализа (включая центрифугирование в градиенте плотности), хроматографии, гель-фильтрации и электрофореза.

Седиментационный анализ проводят в ультрацентрифугах и вычисляют молекулярную массу по скорости седиментации (чем больше масса исследуемого вещества, тем меньше скорость осаждения).

Тонкослойная гель-фильтрация. Длина пробега белка (в мм) через тонкий слой сефадекса находится в логарифмической зависимости от молекулярной массы белка.

Величину и форму белковых молекул определяют благодаря применению методов сканирующей электронной микроскопии и рентгеноструктурного анализа, что позволило в деталях расшифровать не только пространственную структуру, но и соответственно форму и степень асимметрии белковых молекул во всех трех измерениях.

В процессе жизнедеятельности организма белкам принадлежит особая роль, т.к. ни углеводы, ни липиды не могут их заменить в воспроизводстве основных структурных элементов клетки, а также в образовании таких важнейших веществ, как ферменты и гормоны. Однако синтез белка из неорганических веществ возможен только в растительных клетках. В животном организме белок синтезируется из аминокислот, часть которых образуется в самом организме, а другие АК в организмах не синтезируется и должны поступать с пищей. Поэтому биологическая ценность белков пищи определяется наличием в их составе всех АК.

Состояние белкового обмена организма зависит не только от количества принимаемого с пищей белка, но и от качественного его состава. Природные белки обладают неодинаковой пищевой ценностью. Поэтому для удовлетворения пластических потребностей организма требуются различные количества разных белков пищи. Чем ближе аминокислотный состав принимаемого пищевого белка к аминокислотному составу белков тела, тем выше его биологическая ценность. Степень усвоения пищевого белка зависит также от степени гидролиза, распада его под влиянием ферментов желудочно-кишечного тракта. Ряд белковых веществ (шерсть, волосы, перья) несмотря на их близкий состав к белкам тела, почти не используются в качестве пищевого белка, поскольку они не гидролизуются протеиназами кишечника человека и большинства животных.

С понятием биологической ценности белков тесно связан вопрос о незаменимых АК. Живые организмы существенно различаются по способности синтезировать АК. Высшие позвоночные животные не синтезируют всех необходимых для синтетических целей АК.

В организме человека синтезируется только 10 из 20 АК белковой молекулы. Это - заменимые АК. Они могут быть синтезированы из продуктов обмена углеводов и липидов. Остальные 10 аминокислот не синтезируются в организме, они называются незаменимые аминокислоты.

Установлено, что незаменимость аминокислот для роста и развития организма животных и человека связана с отсутствием способность тканей синтезировать углеродные скелеты незаменимых АК, поскольку процесс аминирования кетопроизводных осуществляется легко с помощью реакций трансаминирования. для обеспечения нормальной жизнедеятельности все эти 10 АК должны поступать с пищей. Для взрослого человека аргинин и гистидин оказались частично заменимыми. Исключение незаменимых АК из пищевой смеси сопровождается развитием отрицательного азотистого баланса, слабости, нарушений со стороны нервной системы и т.д. Для человека белки мяса, молока, яиц биологически более ценны, поскольку их аминокислотный состав ближе к АК составу организма и тканей человека. Растительные белки содержат весь необходимый набор АК, но в другом соотношении. Поэтому для удовлетворения потребностей организма в белках их необходимо значительно больше.


Страница: