Электрокинетические явления в дисперсных системах
Рефераты >> Химия >> Электрокинетические явления в дисперсных системах

III.Электроосмос и электрофорез

При рассмотрении электрокинетических явлений Гельмгольц исходил из следующих положений:

1) Электрические заряды поверхности жидкости и твёрдой фазы противоположны по знаку и расположены параллельно друг другу, в результате чего образуется двойной электрический слой;

2) Толщина двойного электрического слоя имеет размеры близкие к молекулярным;

3) При электрокинетических явлениях слой жидкости, непосредственно прилегающий к поверхности твёрдой фазы остаётся неподвижным, тогда как остальная жидкость, находящаяся вблизи этой поверхности, подвижна и к ней приложим закон трения, применяемый к нормальным жидкостям;

4) Течение жидкости в двойном электрическом слое при электрокинетических явлениях происходит ламинарно и выражается обычными гидродинамическими уравнениями;

5) Двойной электрический слой можно рассматривать как плоскопараллельный конденсатор;

6) Распределение зарядов в двойном слое не зависит от напряжённости прилагаемого электрического поля, и внешняя разность потенциалов просто накладывается на поле двойного электрического слоя;

7) Твёрдая фаза является диэлектриком, жидкость же проводит электрический ток.

III.1.Электроосмос

Направленное перемещение жидкости в пористом теле под действием приложенной разности потенциалов (электроосмос) удобно изучать с помощью прибора, схематически показанному на рисунке 5.

Прибор представляет собой U-образную трубку, в одно колено которой впаян капилляр 1 для точного определения количества протекающей жидкости, в другом –между электродами располагается пористое тело 2 (мембрана) из силикогеля, глинозёма и др. материалов.

В прибор наливают воду или водный раствор и отмечают уровень жидкости в капилляре. Если к электродам приложить разность потенциалов, то противоионы диффузного слоя, энергетически слабо связанные с поверхностью твёрдой фазы (мембрана), будут перемещаться к соответствующему электроду и благодаря молекулярному трению увлекать за собой дисперсионную среду (водный раствор). Чем больше потенциал диффузного слоя, тем больше переносчиков зарядов, тем выше скорость перемещения жидкости в пористом теле. Скорость течения жидкости и её направление при постоянной напряжённости электрического поля определяются свойствами мембраны и раствора. Таким образом качественное изучение электроосмоса позволяет однозначно определить знак -потенциала, а количественные измерения –установить зависимость между скоростью переноса жидкости и -потенциалом. Изменяя состав и свойства дисперсной среды, можно проследить за изменением структуры двойного электрического слоя по изменению значения электрокинетического потенциала.

Рис.6 иллюстрирует изменение потенциала и скорости движения u в капиллярах пористого тела с изменением расстояния от межфазной поверхности. Направленное перемещение жидкости, вызванное внешним электрическим полем напряженностью Е, уравновешивается действием возникающей силы трения.

В стационарном состоянии общая сила, действующая на любой сколь угодно малый слой жидкости, равна нулю, и он движется с постоянной скоростью параллельно границе скольжения.

Электрическая сила, действующая на слой жидкости dx (в расчете на единицу площади поверхности), равна:

(III.1)

где dp заряд слоя жидкости dx;

p –объёмная плотность заряда, выраженная в соответствии с уравнением Пуассона;

Сила трения и её дифференциал, приходящийся на единицу площади (согласно закону Ньютона), составляют:

и (III.2)

При установившемся движении (в стационарном состоянии) dFэл.=dFтр., т.е. приравниваем (III.1) и (III.2), получим:

= (III.3)

Решение данного уравнения сводится к определению граничных условий интегрирования, которые легко определить из рисунка 7. При х=l, т.е. на границе скольжения, имеет =и u=0; при х=, т.е. в объёме раствора, =0 и u=0, а и

Окончательно получим следующее выражение для постоянной линейной скорости жидкости относительно мембраны:

(III.4)

Это классическое выражение для скорости движения жидкости при электроосмосе можно получить и на основе представлений двойного электрического слоя как плоского конденсатора, что и было сделано ещё Гельмгольцем. Более строгий вывод соотношения (III.4) был дан Смолуховским, поэтому уравнение (III.4) носит название уравнение Гельмгольца-Смолуховского.

Скорость движения дисперсной среды, отнесённая к единице напряжённости электрического поля, называется электроосмотической подвижностью:

(III.5)

Уравнение Гельмгольца –Смолуховского чаще записывают относительно -потенциала:

= (III.6)

В уравнения (III.5) и (III.6) входит электроосмотическая линейная скорость, которую при обработке экспериментальных данных удобнее заменить на объёмную скорость течения жидкости. Используя закон Ома, получим:

(III.7)

где U-внешняя разность потенциалов;

I-сила тока;

-удельная электропроводность.

Окончательное выражение будет иметь вид:

= (III.8)

Анализ данного соотношения показывает, что оно справедливо как для единичного цилиндрического капилляра, так и для системы капилляров различной формы, поскольку в это уравнение не входят их геометрические параметры.


Страница: