Чудесное топливо будущего
Дом на водороде ведёт к посёлку на водороде и городу на водороде, где единственны энергоносителем становится водород, который используется не только в быту, но и для транспортных целей (автомобили на водородном топливе), в промышленности. Такой город будет совершенно чистым в экологическом отношении, так как единственным выбросом в атмосферу будет чистый водяной пар.
Роль водорода и водородной технологии в кругообороте веществ в природе
В настоящее время связанный углерод в виде природного газа, нефти, твёрдого горючего (древесины, торфа, каменного угля) активной человеческой деятельностью в промышленности, на транспорте и в быту переводится в энергетические тупики – залежи карбонатных пород. Общее промышленно выделение СО2 в атмосферу с каждым годом возрастает. Возвратить эту огромную массу связанного углерода, исчисляемую десятками миллиардов тонн, в кругооборот веществ в природе – одна из важнейших задач водородной технологии. Именно водородная технология разработала ряд путей для достижения этой цели. В основе этой технологии лежат процессы гидрирования СО2 до метана, метанола, жидких углеводородов. Например,
СО2 + 3Н2 катализатор = СН3ОН + Н2О.
Метанол необходим промышленности в миллионах тонн. Он может также стать основным источником для получения бензина.
В долгосрочной перспективе диоксид углерода при наличии мощных источников дешёвого водорода может стать главным, а возможно и единственным сырьевым источником промышленного органического синтеза. При этом, вероятно, найдут применение как обычные химические, каталитические процессы, так и фотохимические и биохимические методы. Здесь необъятный простор для творчества всех степенях науки. Основным компонентом новой системы органической технологии на база СО2 является наличие мощной водородной технологии. Превратить СО2 атмосферы, а если потребуется и часть осадочных карбонатов земной коры в источник углеводородов – крупнейшая задача химии XXI века.
Внимание, водород!
Говоря о водороде, его широком использовании в быту, промышленности, на транспорте, нельзя забывать и о его взрыво- и пожароопасных свойствах. Недостаточная подготовленность и нестрогое выполнение правил при использовании водорода может привести к трагедиям, гибели людей.
При изучении в школе водорода как химического элемента необходимо осветить и его большое будущее в нашей жизни. На уроках химии следует подготавливать учащихся к обращению с ним при его получении и использовании. Нужно призывать их к большой осторожности и вниманию при работе с водородом. Каждый учащийся должен знать пределы его воспламенения и взрываемости в воздухе, в кислороде, энергию воспламенения, правила хранения и техники безопасности при обращении с водородом как газообразном, так и в жидком состоянии.
Проблемы получения энергии
Сейчас на человечество надвигается энергетический кризис, и пока официальная наука с прискорбием сообщает, что нет альтернативы традиционным источникам энергии - уголь, нефть, газ.
Огромную часть энергии дают нам АЭС и ГЭС. Поговорим об АЭС. На них используется энергия, получающаяся в результате расщепления атомного ядра. Но год назад Владимир Машков в своих исследованиях предложил расщеплять не тяжелые атомы, а легчайшие элементарные частицы.
Фотон вместо бензина
Электроны и протоны будут превращаться в носители света – фотоны. При этом не образуется никаких осколков деления; вместо радиоактивных отходов мы получим энергию в чистом виде. На земле наступит экологический рай…
Самый наглядный пример превращения элементарных частиц в фотоны с выделением энергии – это шаровая молния. Она может существовать несколько минут, потому что имеет источник энергии. Не будь его – шаровая молния сразу бы распалась. Но она представляет собой некий плазменный комплекс, в котором электрические и магнитные поля формируют взаимопереходящие друг в друга бегущие и стоячие волны. В результате часть свободных электронов внутри объема шаровой молнии разлагается в энергию фотонов под действием электрических полей.
Фотонная энергетика открывает перед человечеством грандиозные перспективы. А, следовательно, уголь, нефть и газ перестанут использовать как топливо. На всех машинах установят источники фотонной энергии, горючим для которых станет атмосфера или кусок любого вещества.
Вот такую идею предложил известный исследователь физических полей и строения микромира, заместитель главного инженера Таганрогского авиационного завода Владимир Машков.
Но пока эти проекты не доступны и будут использоваться только в будущем, ну а сейчас уже ни у кого не остается сомнений, что человечество стоит на пороге эры нового топлива.
А пока разрабатываются новые проекты источников энергии. Например, водородно-кислотная система, извлекающая энергию из воды путем электролиза.
Использование водородно-кислотного элемента
Проведем несложный опыт. В закрытый сосуд с разбавленным раствором серной кислоты погружены два платиновых электрода. Один из них обтекается водородом, другой - кислородом. Газы поступают из помещенных под электродами трубок, которые отделены друг от друга полунепроницаемой диафрагмой. Она препятствует прямому взаимодействию топлива, то есть водорода с кислородом. На аноде (положительном полюсе) молекулы водорода (Н2) благодаря каталитическому действию поверхности платины диссоциируют на два атома (2Н), которые переходят в раствор в виде ионов Н+, оставляя свои электроны на платиновом аноде. Водородные ионы легко проходят через полунепроницаемую диафрагму в другую половину сосуда, на катоде (отрицательный полюс) кислород соединяется с атомами водорода или с водородными ионами и электронами, образуя воду. Если соединить оба полюса топливного элемента, то свободные электроны двинутся по нему от катода к аноду - в цепи потечет электрический ток.
Водородные двигатели
Весьма заманчива своей дешевизной оказалась идея двигателя внутреннего сгорания, использующего в качестве топлива водород. Такой мотор, потребляя водород и воздух, выбрасывает в качестве продукта горения воду.
Американские исследователи Университета штата Оклахома приспособили для водорода классический бензиновый автомобильный двигатель. Оказалось, что при прямом впрыскивании водорода в цилиндры - как в дизельных двигателях - отпадает надобность в опережении зажигания. Как показал анализ выхлопных газов, окислы серы и углерода в них вообще отсутствуют, а окислы азота содержится лишь в незначительных количествах.
Однако широкому применению водорода в качестве автомобильного топлива препятствует немало проблем, и самая трудная из них - топливные баки. На 10 кг водорода автомобиль может проехать столько же, сколько на 30 кг бензина, но такое количество газообразного водорода занимает объем 8000 л, а чтобы хранить его требуется прочный резервуар массой 1500 кг. Это натолкнуло конструкторов на мысль использовать сжиженный водород; тогда те же 10 кг водорода помещаются в баллоне массой 80 кг и емкостью 160 л. Но чтобы иметь водород в сжиженном состоянии, нужно поддерживать в баллоне температуру -2530С. Применять сосуды Дьюара было бы слишком дорого. Возможно, конструкторам удастся использовать какие-то варианты широко применяемых в настоящее время резервуаров для хранения жидкого топлива, у которых суточные потери на испарение не превышают 1,5%. Так, в экспериментальном автомобиле «Волга» смонтирован криогенный водородный бак общей массой 140 кг. Специалисты нашли и другое решение: бак можно изготовить из гидридов металлов сплавов магния, марганца, титана и железа, которые обладают тем преимуществом, что поглощают часть испаряющегося водорода, а при нагреве (хотя бы выхлопными газами) снова выделяют его. Масса водородного бака из гидридов металлов превышает 150 кг.