Химия и обмен углеводов
Пектин способен связывать тяжелые металлы, в том числе и радионуклиды, что уменьшает их поступление в ткани организма. Пектином богаты бананы, яблоки, красная и черная смородина.
Биологическая ценность углеводов не исчерпывается их энергетической значимостью (особо отметим, что глюкоза является основным поставщиком энергии для нервной ткани и коркового вещества почек, а для эритроцитов – и единственным). Они выполняют в организме пластическую (структурную) функцию, входя в состав гликопротеинов, межклеточного вещества соединительной ткани, гликокаликса плазматических мембран клеток; моносахариды рибоза и дезоксирибоза являются структурными компонентами нуклеиновых кислот.
Анаболическая функция углеводов заключается в том, что они являются основным источником субстратов для синтеза жирных кислот, а продукты распада глюкозы (-кетокислоты) служат субстратом синтеза гликогенных аминокислот. Обезвреживающая функция углеводов также существенна: УДФ-глюкуроновая кислота в печени связывает многие токсические соединения, придавая им большую гидрофильность и способность растворяться в желчи. Исключительно важна рецепторная функция углеводов – являясь составной частью многочисленных антител, они обеспечивают “узнавание” своих антигенов; углеводы входят в состав рецепторов гормонов и нейромедиаторов, участвуя в регуляции жизнедеятельности клеток.
NB! Переваривание углеводов начинается в ротовой полости
В ротовой полости углеводы перевариваются ферментом слюны α-амилазой. Фермент расщепляет внутренние α(1→4)-гликозидные связи. При этом образуются продукты неполного гидролиза крахмала (или гликогена) – декстрины. В небольшом количестве образуется и мальтоза. В активном центре α-амилазы находятся ионы Са2+. Активируют фермент ионы Na+.
В желудочном соке переваривание углеводов тормозится, так как амилаза в кислой среде инактивируется.
Главное место переваривания углеводов – двенадцатиперстная кишка, куда выделяется в составе панкреатического сока α-амилаза. Этот фермент завершает расщепление крахмала и гликогена, начатое амилазой слюны, до мальтозы. Гидролиз α(1→6)-гликозидной связи катализируется ферментами кишечника амило-1,6-глюкозидазой и олиго-1,6-глюкозидазой.
Переваривание мальтозы и дисахаридов, поступающих с пищей, осуществляется в области щеточной каемки эпителиальных клеток (энтероцитов) тонкого кишечника. Дисахаридазы являются интегральными белками микроворсинок энтероцита. Они образуют полиферментный комплекс, состоящий из четырех ферментов, активные центры которых направлены в просвет кишечника.
1. Мальтаза (a-глюкозидаза) гидролизует мальтозу на две молекулы D-глюкозы.
2. Лактаза (b-галактозидаза) гидролизует лактозу на D-галактозу и D-глюкозу.
3. Изомальтаза /Сахараза (фермент двойного действия) имеет два активных центра, расположенных в разных доменах. Фермент гидролизует сахарозу до D-фруктозы и D-глюкозы, а с помощью другого активного центра фермент катализирует гидролиз изомальтозы до двух молекул D-глюкозы.
Непереносимость некоторыми людьми молока, проявляющаяся болями в животе, его вздутием (метеоризм) и поносом, обусловлена снижением активности лактазы. Можно выделить три типа недостаточности лактазы.
1. Наследственный дефицит лактазы. Симптомы нарушенной толерантности развиваются очень быстро после рождения. Кормление пищей, не содержащей лактозу, приводит к исчезновению симптомов.
2. Низкая активность лактазы первичного характера (постепенное снижение активности лактазы у предрасположенных лиц). У 15 % детей стран Европы и 80% детей стран Востока, Азии, Африки, Японии синтез данного фермента по мере их взросления постепенно прекращается и у взрослых развивается непереносимость молока, сопровождающаяся вышеуказанными симптомами. Кисломолочные продукты такими людьми переносятся хорошо.
Низкая активность лактазы вторичного характера. Неусвояемость молока нередко бывает следствием кишечных заболеваний (тропическая и нетропическая формы спру, квашиоркор, колит, гастроэнтерит).
Симптомы, аналогичные описанным при недостаточности лактазы, характерны для недостаточности других дисахаридаз. Лечение направлено на исключение соответствующих дисахаридов из пищевого рациона.
NB! В клетки разных органов глюкоза проникает различными механизмами
Основными продуктами полного переваривания крахмала и дисахаридов являются глюкоза, фруктоза и галактоза. Моносахариды поступают в кровь из кишечника, преодолевая два барьера: мембрану щеточной каймы, обращенную в просвет кишечника и базолатеральную мембрану энтероцита.
Известны два механизма поступления глюкозы в клетки: облегченная диффузия и вторичный активный транспорт, сопряженный с переносом ионов Na+.
Переносчики глюкозы (ГЛУТ), обеспечивающие механизм ее облегченной диффузии через клеточные мембраны, формируют семейство родственных гомологичных белков, характерным признаком структуры которых является длинная полипептидная цепь, образующая 12 трансмембранных спиральных сегментов. Один из доменов, расположенный на внешней поверхности мембраны содержит олигосахарид. N- и C- концевые отделы переносчика обращены внутрь клетки. 3-й, 5-й, 7-й, и 11-й трансмембранные сегменты переносчика, по-видимому, образуют канал, по которому глюкоза поступает в клетку. Изменение конформации этих сегментов обеспечивает процесс перемещения глюкозы внутрь клетки. Переносчики этого семейства содержат 492-524 аминокислотных остатка и различаются по сродству к глюкозе. Каждый транспортер, по-видимому, выполняет специфические функции.
Переносчики, обеспечивающие вторичный, зависимый от ионов натрия, активный транспорт глюкозы из кишечника и почечных канальцев (НГЛТ), значительно отличаются по аминокислотному составу от переносчиков семейства ГЛУТ, хотя также построены из двенадцати трансмембранных доменов.
Ниже, в таблице приводятся некоторые свойства переносчиков моносахаридов.
Таблица Характеристика переносчиков глюкозы у животных | |||
Функция |
KМ (мM) |
Основные места образования | |
Вторичный активный транспорт | |||
НГЛТ 1 |
Всасывание глюкозы |
0,1-1,0 |
Тонкий кишечник, канальцы почек |
НГЛТ 2 |
Всасывание глюкозы |
1,6 |
Почечные канальцы |
Ускоренная диффузия | |||
ГЛУТ 1 |
Использование глюкозы клетками в физиологических условиях |
1-2 |
Плацента, гематоэнцефалический барьер, мозг, эритроциты, почки, толстый кишечник, др. органы |
ГЛУТ 2 |
Сенсор глюкозы в В клетках; транспорт из эпителиоцитов почек и кишечника |
12-20 |
B клетки островков, печень, эпителий тонкого кишечника, почки |
ГЛУТ 3 |
Использование глюкозы клетками в физиологических условиях |
<1 |
Мозг, плацента, почки, др. органы |
ГЛУТ 4 |
Стимулируемое инсулином поглощение глюкозы |
5 |
Скелетная и сердечная мышца, жировая ткань, другие ткани |
ГЛУТ 5 |
Транспорт фруктозы |
1-2 |
Тонкий кишечник, сперматозоиды |