Химия жизни
Рефераты >> Химия >> Химия жизни

С возникновением теории относительности, квантовой механики и учения об элементарных частицах раскрылись еще более глубокие связи между физикой и химией. Оказа­лось, что разгадка объяснения существа свойств химических соединений, самого механизма превращения веществ лежит в строении атомов, в квантово-механических процессах его элементарных частиц и особенно электронов внешней обо­лочки, Именно новейшая физика сумела решить такие воп­росы химии, как природа химической связи, особенности химического строения молекул органических и неорганичес­ких соединений и т.д.

В сфере соприкосновения физики и химии возник и ус­пешно развивается такой сравнительно молодой раздел из числа основных разделов химии как физическая химия, ко­торая оформилась в конце XIX в. в результате успешных попыток количественного изучения физических свойств хи­мических веществ и смесей, теоретического объяснения мо­лекулярных структур. Экспериментальной и теоретической базой для этого послужили работы Д.И. Менделеева (откры­тие Периодического закона), Вант-Гоффа (термодинамика химических процессов), С. Аррениуса (теория электролити­ческой диссоциации) и т.д. Предметом ее изучения стали об­щетеоретические вопросы, касающиеся строения и свойств молекул химических соединений, процессов превращения веществ в связи с взаимной обусловленностью их физически­ми свойствами, изучение условий протекания химических реакций и совершающихся при этом физических явлений. Сейчас физхимия — это разносторонне разветвленная наука, тесно связывающая физику и химию.

В самой физической химии к настоящему времени выде­лились и вполне сложились в качестве самостоятельных раз­делов, обладающих своими особыми методами и объектами исследования, электрохимия, учение о растворах, фотохимия, кристаллохимия. В начале XX в. выделилась также в само­стоятельную науку выросшая в недрах физической химии коллоидная химия. Со второй половины XX в. в связи с ин­тенсивной разработкой проблем ядерной энергии возникли и получили большое развитие новейшие отрасли физической Химии — химия высоких энергий, радиационная химия (пред­метом ее изучения являются реакции, протекающие под дей­ствием ионизирующего излучения), химия изотопов.

Физическая химия рассматривается сейчас как наиболее широкий общетеоретический фундамент всей химической науки. Многие ее учения и теории имеют большое значение для развития неорганической и особенно органической хи­мии. С возникновением физической химии изучение веще­ства стало осуществляться не только традиционными хими­ческими методами исследования, не только с точки зрения его состава и свойств, но и со стороны структуры, термодина­мики и кинетики химического процесса, а также со стороны связи и зависимости последнего от воздействия явлений, при­сущих другим формам движения (световое и радиационное облучение, световое и тепловое воздействие и т.д.).

Примечательно, что в первой половине XX в. сложилась пограничная между химией и новыми разделами физики (кван­товая механика, электронная теория атомов и молекул) на­ука, которую стали позднее называть химической физикой. Она широко применила теоретические и экспериментальные методы новейшей физики к исследованию строения химиче­ских элементов и соединений и особенно механизма реакций. Химическая физика изучает взаимосвязь и взаимопереход химической и субатомной форм движения материи.

В иерархии основных наук, данной Ф. Энгельсом, химия непосредственно соседствует с физикой. Это соседство и обес­печило ту быстроту и глубину, с которой многие разделы физики плодотворно вклиниваются в химию. Химия грани­чит, с одной стороны, с макроскопической физикой — термо­динамикой, физикой сплошных сред, а с другой — с микро­физикой — статической физикой, квантовой механикой.

Общеизвестно, сколь плодотворными эти контакты оказа­лись для химии. Термодинамика породила химическую термодинамику — учение о химических равновесиях. Статиче­ская физика легла в основу химической кинетики — учения о скоростях химических превращений. Квантовая механика вскрыла сущность Периодического закона Менделеева. Со­временная теория химического строения и реакционной спо­собности — это квантовая химия, т.е. приложение принципов квантовой механики к исследованию молекул и «X превра­щений.

Еще одним свидетельством плодотворности влияния фи­зики на химическую науку является все расширяющееся применение физических методов в химических исследовани­ях. Поразительный прогресс в этой области особенно отчет-диво виден на примере спектроскопических методов. Еще совсем недавно из бесконечного диапазона электромагнитных излучений химики использовали лишь узкую область види­мого и примыкающего к нему участков инфракрасного и уль­трафиолетового диапазонов. Открытие физиками явления магнитного резонансного поглощения привело к появлению спектроскопии ядерного магнитного резонанса, наиболее ин­формативного современного аналитического метода и метода изучения электронного строения молекул, и спектроскопии электронного парамагнитного резонанса, уникального мето­да изучения нестабильных промежуточных частиц - свобод­ных радикалов. В коротковолновой области электромагнит­ных излучений возникла рентгеновская и гамма-резонанс­ная спектроскопия, обязанная своим появлением открытию Мессбауэра. Освоение синхротронного излучения открыло новые перспективы развития этого высокоэнергетического раздела спектроскопии.

Казалось бы, освоен весь электромагнитный диапазон, и в этой области трудно ждать дальнейшего прогресса. Однако появились лазеры — уникальные по своей спектральной ин­тенсивности источники — и вместе с ними принципиально новые аналитические возможности. Среди них можно назвать лазерный магнитный резонанс — быстро развивающийся вы­сокочувствительный метод регистрации радикалов в газе. Другая, поистине фантастическая возможность — это штуч­ная регистрация атомов с помощью лазера — методика, основная на селективном возбуждении, позволяющая зарегис­трировать в кювете всего несколько атомов посторонней при-Л0еи. Поразительные возможности для изучения механизмов радикальных реакций дало открытие явления химической поляризации ядер.

Сейчас трудно назвать область современной физики, кото­рая бы прямо или косвенно не оказывала влияние на химию. Взять, например, далекую от мира молекул, построенного из ядер и электронов, физику нестабильных элементарных час­тиц. Может показаться удивительным, что на специальных международных конференциях обсуждается химическое по­ведение атомов, имеющих в своем составе позитрон или мюон, которые, в принципе, не могут дать устойчивых соединений. Однако уникальная информация о сверхбыстрых реакциях, Которую такие атомы позволяют получать, полностью оправ­дывает этот интерес.

Оглядываясь на историю взаимоотношений физики и хи­мии, мы видим, что физика играла важную, подчас решаю­щую роль в развитии теоретических концепций и методов исследования в химии. Степень признания этой роли можно оценить, просмотрев, например, список лауреатов Нобелев­ской премии по химии. Не менее трети в этом списке — авто­ры крупнейших достижений в области физической химии. Среди них — те, кто открыл радиоактивность и изотопы (Резерфорд, М. Кюри, Содди, Астон, Жолио-Кюри и др.), зало­жил основы квантовой химии (Полинг и Малликен) и совре­менной химической кинетики (Хиншелвуд и Семенов), раз­вил новые физические методы (Дебай, Гейеровский, Эйген, Норриш и Портер, Герцберг).


Страница: