Химия актиноидов (актинидов)
CfF4. Двухвалентное состояние во второй половине ряда появляется у калифорния и становится все более устойчивым по мере продвижения к нобелию. Двухвалентные менделевий и нобелий наблюдались в водных растворах, а для нобелия это оказалось наиболее устойчивым состоянием. Двухвалентный америций встречался только в твердых соединениях. Образование четырехвалентного берклия, возможно, связано с повышенной устойчивостью наполовину заполненной 5f-оболочки (5f 7) ,а двухвалентное состояние нобелия отражает устойчивость полностью укомплектованной 5f-оболочки (5f 14).Необходимы большие усилия, чтобы все элементы от плутония до нобелия были получены в двухвалентном состоянии, и для того, чтобы утверждать, что двухвалентное состояние является устойчивым для элементов от фермия до нобелия. Однако подтверждений этому не имеется. Менделевий зарегистрирован в одновалентном состоянии, но доказательства существования моновалентных ионов актинидов сомнительны.
5.ТИПЫ ИОНОВ.
Ионы актинидов в различных степенях окисления имеют по существу различные структуры. В водных растворах при pH < 3 существуют четыре типа катионов актинидов. Ионы вида М3+ или М4+ ,аналогично катионам с высоким зарядом, проявляют большую склонность к сольватации, гидролизу и полимеризации. Для актинидных элементов в высших степенях окисления эффективный заряд простого иона уменьшается за счет образования оксигенированных форм общего вида МО2+ и МО22+.Актинильные ионы МО2+ и МО22+ в высшей степени устойчивы и в таком виде принимают участие в огромном количестве реакций.
6.ИСТОЧНИКИ.
Нахождение в природе.
Элементы от актиния до плутония встречаются в природе. Нептуний (237Np , 239Np) и плутоний (239Pu) присутствуют в природе в незначительных количествах как результат нейтронных реакций в урановых рудах. Долгоживущий 244Pu обнаружен в редкоземельном минерале бастнезите в количестве 1 часть на 1018 и, первичного происхождения. Только элементы торий, протактиний и уран присутствуют в природных объектах в количествах, позволяющих их извлечение. Более важно, что содержание тория и урана в некоторых минеральных образованиях настолько высоко, что позволяет добывать их путем обычных горных разработок. Наиболее богатые месторождения урана обнаружены в Северном Саскачеване в Канаде. Ведущими производителями урановой руды, для которых имеются статистические данные, являются Канада, Южная Африка, Австралия и Намибия. Выделение тория и урана из этих руд практиковалось за много лет до открытия трансурановых элементов, и существуют технологии для их выделения из различных руд.
Нейтронное облучение.
Актиний и протактиний являются продуктами распада естественного изотопа 235U и присутствуют в урановых минералах в таких низких концентрациях, что их выделение из природных образцов является весьма сложной и неблагодарной задачей. Для сравнения, имеется относительно простой метод получения актиния, протактиния и большинства отсутствующих в природе трансурановых элементов путём нейтронного облучения в ядерном реакторе элементов с меньшим атомным номером. Так, актиний может быть получен в мультиграмовых количествах путём взаимодействия радия с нейтронами, получающимися в высокопоточном ядерном реакторе:
226Ra+n=227Ra+g
227Ra = 227Ac + b
Образовавшийся актиний может быть отделен от материнского радия экстракционным или ионообменным методом, и граммовые количества актиния были получены таким способом. Это совсем не легкая задача, принимая во внимание образование высокорадиоактивных веществ. Но предпочтительнее, чем выделение из природных источников.
7.ПОЛУЧЕНИЕ.
Актинидные металлы высокоэлектроположительны и реагируют с водяным паром, кислородом и, в мелкодисперсном состоянии, с азотом воздуха. Из-за a-активности актинидов для работы с ними необходимы прозрачные боксы с принудительной вентиляцией. Для некоторых тяжелых актинидов необходимы экраны, поглощающие нейтроны, образующиеся при спонтанном делении. Актинидные элементы образуют очень устойчивые оксиды и фториды, и необходимы сильные восстановители и высокая температура для восстановления их до металлов. Ранние получения актинидных металлов включали восстановление безводных три- или тетрафторидов металлическим литием или барием при высокой температуре. Напротив, оксиды актинидов восстанавливаются при высоких температурах металлическим лантаном или торием. Металлические актиниды могут быть получены из реакционной смеси достаточно чистым путём возгонки металла. Восстановление оксидов является предпочтительным способом для получения от милиграмовых до граммовых количеств Ac, Am, Cm, Bk, Cf и Es.Металлический уран, торий и плутоний получаются при обычных технологических операциях.
Многие современные исследования металлического состояния требуют очень чистых металлов. В зависимости от природы примесей металлические актиниды могут быть очищены отгонкой примесей в очень высоком вакууме, отгонкой самого металла с образованием пленки очень чистого металла, или путем электроосаждения из расплавов солей. Очень чистые металлы могут быть получены с помощью процесса Ван Аркеля, который состоит из превращения неочищенного металла в летучий йодид за счет реакции с элементарным йодом при повышенной температуре с последующим разложением газообразного йодида на раскалённой нити. При этом образуется чрезвычайно чистый металл, который используется для таких целей, как измерение сверхпроводимости, которое требует металл высочайшей чистоты.
8.ОБЩИЕ ХАРАКТЕРИСТИКИ, МЕТОДЫ И ИСТОРИЯ ПОЛУЧЕНИЯ, ХИМИЧЕСКИЕ СВОЙСТВА УРАНА И ПЛУТОНИЯ:
1) Уран
Трудно сказать, какое имя дал бы немецкий ученый Мартин Клапрот открытому в 1789 году элементу, если бы за несколько лет до этого не произошло событие, взволновавшее все круги общества: в 1781 году английский астроном Вильям Гершель, наблюдая с помощью самодельного телескопа звездное небо, обнаружил светящееся облачко, которое он поначалу принял за комету, но в дальнейшем убедился, что видит новую, неизвестную дотоле седьмую планету солнечной системы. В честь древнегреческого бога неба Гершель назвал ее Ураном. Находившийся под впечатлением этого события, Клапрот дал новорожденному элементу имя новой планеты.
Спустя примерно полвека, в 1841 году, французский химик Эжен Пелиго сумел впервые получить металлический уран. Промышленный мир остался равнодушным к тяжелому, сравнительно мягкому металлу, каким оказался уран. Его механические и химические свойства не привлекли ни металлургов, ни машиностроителей. Лишь стеклодувы Богемии да саксонские мастера фарфоровых и фаянсовых дел охотно применяли окись этого металла, чтобы придать бокалам красивый желто-зеленый цвет или украсить блюда затейливым бархатно-черным узором.
О «художественных способностях» урановых соединений знали еще древние римляне. При раскопках, проведенных близ Неаполя, удалось найти стеклянную мозаичную фреску удивительной красоты. Археологи были поражены: за два тысячелетия стекла почти не потускнели. Когда образцы стекол подвергли химическому анализу, оказалось, что в них присутствует окись урана, которой мозаика и была обязана своим долголетием. Но, если окислы и соли урана занимались «общественно полезным трудом», то сам металл в чистом виде почти никого не интересовал.