Химические соединения на основе кремния и углерода
Рефераты >> Химия >> Химические соединения на основе кремния и углерода

Глава 3. Соединения кремния

Отличие химии кремния от углерода в основном обусловлено большими размерами его атома и возможностью использования свободных Зй-орбиталей. Из-за дополнительного связывания (по донорно-акцепторному механизму) связи кремния с кислородом Si-О-Si и фтором Si-F (табл.17.23) более прочны, чем у углерода, а из-за большего размера атома Si по сравнению с атомом С связи Si-Н и Si-Si менее прочны, чем у углерода. Атомы кремния практически не способны давать цепи. Аналогичный углеводородам гомологический ряд кремневодородов SinH2n+2 (си-ланы) получен лишь до состава Si4Hio. Из-за большего размера у атома Si слабо выражена и способность к л-перекрыванию, поэтому не только тройные, но и двойные связи для него малохарактерны.

При взаимодействии кремния с металлами образуются силициды (Ca2Si, Mg2Si, BaSi2, Cr3Si, CrSi2 и др.), похожие во многом на карбиды. Силициды не характерны для элементов I группы (кроме Li). Галогениды кремния (табл.5) более прочные соединения, чем галогениды углерода; вместе с тем водой они разлагаются.

Таблица 5. Прочность некоторых связей углерода и кремния

Связь

Энергия связи, кДж/моль

Связь

Энергия связи, к Д ж/моль

С-С

348

Si-Si

222

С-Н

414

Si-H

319

С-О

359

Si-О

445

C-F

487

Si-F

567

С-Сl

340

Si-Cl

382

С-Вг

285

Si-Br

310

С-I

214

Si-I

235

C-N

206

Si-N

330-350

Наиболее прочным галогенидом кремния является SiF4 (разлагается только под действием электрического разряда), но так же, как и другие галогениды, подвергается гидролизу. При взаимодействии SiF4 с HF образуется гексафторокремниевая кислота:

SiF4+2HF=H2 [SiF6].

H2SiF6 по силе близка к H2S04. Производные этой кислоты - фторосиликаты, как правило, растворимы в воде. Плохо растворимы фторосиликаты щелочных металлов (кроме Li и NH4). Фторосиликаты используются как ядохимикаты (инсектициды).

Практически важным галогенидом является SiCO4. Он используется для получения кремнийорганических соединений. Так, SiCL4 легко взаимодействует со спиртами с образованием эфиров кремниевой кислоты HaSiO3:

SiCl4+4C2H5OH=Si (OC2H5) 4+4HCl 4

Таблица 6. Галогениды углерода и кремния

Эфиры кремниевой кислоты, гидролизуясь, образуют силиконы - полимерные вещества цепочечного строения:

(R-органический радикал), которые нашли применение для получения каучуков, масел и смазок.

Сульфид кремния (SiS2) n-полимерное вещество; при обычной температуре устойчив; разлагается водой:

SiS2+ ЗН2О = 2H2S + H2SiO3.

3.1 Кислородные соединения кремния

Важнейшим кислородным соединением кремния является диоксид кремния SiO2 (кремнезем), имеющий несколько кристаллических модификаций.

Низкотемпературная модификация (до 1143 К) называется кварцем. Кварц обладает пьезоэлектрическими свойствами. Природные разновидности кварца: горный хрусталь, топаз, аметист. Разновидностями кремнезема являются халцедон, опал, агат,. яшма, песок. [5, 322]

Кремнезем химически стоек; на него действуют лишь фтор, плавиковая кислота и растворы щелочей. Он легко переходит в стеклообразное состояние (кварцевое стекло). Кварцевое стекло хрупко, химически и термически весьма стойко. Отвечающая SiO2 кремниевая кислота не имеет определенного состава. Обычно кремниевую кислоту записывают в виде xH2O-ySiO2. Выделены кремниевые кислоты: H2SiO3 (H2O-SiO2) - метакремниевая (три-оксокремниевая), H4Si04 (2H20-Si02) - ортокремниевая (тетра-оксокремниевая), H2Si2O5 (H2O * SiO2) - диметакремниевая.

Кремниевые кислоты - плохо растворимые вещества. В соответствии с менее металлоидным характером кремния по сравнению с углеродом H2SiO3 как электролит слабее Н2СОз. [4,467 - 468]

Отвечающие кремниевым кислотам соли-силикаты-в воде нерастворимы (кроме силикатов щелочных металлов). Растворимые силикаты гидролизуются по уравнению

2SiOз2-+H20=Si2O52-+20H-.

Концентрированные растворы растворимых силикатов называют жидким стеклом. Обычное оконное стекло-силикат натрия и кальция-имеет состав Na20-CaO-6Si02. Его получают по реакции

Известно большое разнообразие силикатов (точнее, оксосиликатов). В строении оксосиликатов наблюдается определенная закономерность: все состоят из тетраэдров Si04, которые через атом кислорода соединены друг с другом. Наиболее распространенными сочетаниями тетраэдров являются (Si2O76-), (Si3O9) 6-, (Si40l2) 8-, (Si6O1812-), которые как структурные единицы могут объединяться в цепочки, ленты, сетки и каркасы (рис 4).

Важнейшими природными силикатами являются, например, тальк (3MgO * H20-4Si02) и асбест (SmgO*H2O*SiO2). Как и для SiO2, для силикатов характерно стеклообразное (аморфное) состояние. При управляемой кристаллизации стекла можно получить мелкокристаллическое состояние (ситаллы). Ситаллы характеризуются повышенной прочностью.

Кроме силикатов в природе широко распространены алюмосиликаты. Алюмосиликаты - каркасные оксосиликаты, в которых часть атомов кремния заменена на трехвалентный Аl; например Na12 [ (Si, Al) 04] 12.

Для кремниевой кислоты характерно коллоидное состояние при воздействии на ее соли кислот H2SiO3 выпадает не сразу. Коллоидные растворы кремниевой кислоты (золи) при определенных условиях (например, при нагревании) можно перевести в прозрачную, однородную студнеобразную массу-гель кремниевой кислоты. Гели - высокомолекулярные соединения с пространственной, весьма рыхлой структурой, образованной молекулами Si02, пустоты которой заполнены молекулами H2O. При обезвоживании гелей кремниевой кислоты получают силикагель - пористый продукт, обладающий высокой адсорбционной способностью.


Страница: