Химические реакции и системы
Рефераты >> Химия >> Химические реакции и системы

Механизм электролитической диссоциации веществ

Рассмотрим механизм электролитической диссоциации на примере диссоциации хлорида натрия NaCl в водном растворе.

Молекулы воды полярны, они представляют собой диполи: на одном конце диполя δˉ (частичный отрицательный заряд), на другом – δ⁺ (частичный положительный заряд). При контакте кристалла NaCl с водным раствором, водородные связи между молекулами воды, находящимися вблизи кристалла, разрушаются. Диполи воды ориентируются своими полюсами относительно ионов на поверхности кристалла: отрицательным полюсом диполя – к катионам натрия, положительным полюсом диполя – к анионам хлора. Происходит процесс соединения ионов соли с молекулами воды – гидратация ионов. Молекулы воды, притягивающиеся к ионам растворяемой соли, во много раз ослабляют притяжение ионов друг к другу. Постепенно гидратированные ионы разъединяются (рис. 1).

Гидратированные ионы – это ионы, химически связанные с молекулами воды.

IMG.jpgрис. 1.

Одним из важных факторов. Обуславливающих возможность диссоциации электролитов в водных растворах, является высокая диэлектрическая проницаемость воды[3]. В ходе диссоциации ионных связей энергия затрачивается, а в ходе гидратации – выделяется. Если энергия гидратации с избытком компенсирует затраты энергии диссоциации ионных связей, то растворение таких электролитов – экзотермический процесс. Если энергия гидратации не полностью компенсирует затраты энергии диссоциации ионных связей, растворение таких электролитов будет эндотермическим процессом.

Электролитическая диссоциация электролитов с ковалентной полярной связью включает в себя еще и процесс поляризации полярной молекулы. Рассмотрим схему данного процесса на примере электролитической диссоциации молекул хлороводорода в воде (рис. 2.).

Копия IMG.jpgрис. 2.

При растворении хлороводорода в воде диполи воды ориентируются относительно диполя НС1. Под действием диполей воды происходит поляризации связи Н-С1, в результате которой общая электронная пара полностью смещается к атомной частице хлора. Связь Н-С1 диссоциирует, и образуются гидратированные ионы. Ионы Н⁺ взаимодействуют с молекулами воды с образованием иона гидроксония Н3О⁺.

1.3 Гидролиз солей

Гидролиз солей – обменная реакция некоторых солей с водой, в результате такой реакции происходит смещение равновесия диссоциации воды.

Вода в незначительной мере диссоциирует на ионы:

Н2ОóН⁺ + ОНˉ

Произведение равновесных концентраций ионов Н⁺ и ОНˉ называется ионным произведением воды Kw. При стандартных условиях оно составляет величину 10ˉ14.

В нейтральном растворе [Н⁺]=[ОНˉ]= 10ˉ7моль/л.

Рассмотрим взаимодействие анионов с водой. Анионы, образовавшиеся при диссоциации солей и способные к связыванию с ионами Н⁺, вызывают смещение равновесия диссоциации воды, так как они взаимодействуют с молекулами воды. Например:

СО32ˉ+Н2О óНСО3ˉ+ОНˉ

В растворе остается избыток гидроксид-анионов ОНˉ, в этом случае среда будет щелочной (рН>7).

Рассмотрим процесс взаимодействия катионов с молекулами воды. Катионы, образовавшиеся при диссоциации солей и способные к связыванию с ионами ОНˉ, вызывают смещение равновесия диссоциации воды, так как они взаимодействуют с молекулами воды:

А13⁺+Н2ОóА1ОН2⁺+Н⁺

В растворе остается избыток катионов водорода Н⁺ (точнее, катионов гидроксония), в этом случае среда будет кислой (рН<7).

При наличии в растворе многозарядных ионов (2+, 3+, 2 – .3-) гидролиз происходит ступенчато. При этом надо учитывать, что гидролиз при обычных условиях в достаточной мере осуществляется только по первой ступени, а по второй, третьей ступени – в очень незначительной степени.

Соли сильного основания и сильной кислоты гидролизу не подвергаются, так как нет связывания ионов, не происходит образования слабых электролитов. В этом случае реакция среды в растворе – нейтральная.

Соли слабого основания и сильной кислоты подвергаются гидролизу по катиону, реакция среды в растворе, в таком случае, кислая.

Гидролиз соли сильного основания и слабой кислоты происходит по аниону, реакция среды в растворе – щелочная.

Гидролиз соли слабого основания и слабой кислоты происходит как по аниону, так и по катиону. Реакция среды в этом случае зависит от соотношения констант диссоциации соответствующих основания и кислоты.

Усилить гидролиз можно разбавлением раствора, нагреванием системы.

2. Химические реакции

Химические реакции (химические явления) – это процессы, в результате которых одни вещества превращаются в другие.

Признаками осуществления химических реакций являются:

– изменение цвета;

– выделение газа;

– выпадение или растворение осадка;

– появление или исчезновение запаха;

– выделение тепла и света.

Перечисленные признаки реакций можно обнаружить непосредственно в ходе визуального наблюдения. Существуют и другие признаки осуществления реакций, которые нельзя заметить визуально, но можно обнаружить с помощью приборов.

Некоторые реакции можно осуществить только при определенных условиях: при нагревании, при освещении, при повышенном давлении, при наличии определенных веществ, способствующих осуществлению реакции – катализаторов.

В ходе химических реакций соблюдается закон сохранения массы: масса веществ, вступивших в реакцию, равна массе веществ, образующихся в результате реакции.

Стехиометрия реакции – соотношение между количествами вступающих в реакцию реагентов и образующихся в результате реакции продуктов реакции.

Если а моль вещества А реагирует с b моль вещества В, а в результате реакции образуется х моль вещества Х и z моль вещества Z, то уравнение

a A + b B = x X + z Z

называется химическим уравнением данной реакции, а числа a, b, x, z называются стехиометрическими коэффициентами.

2.2 Классификация реакций

В зависимости от разных критериев химические реакции классифицируют на несколько типов. Так, по количеству и составу реагирующих веществ и продуктов в неорганической химии различают реакции:

соединения – реакции, в ходе которых из нескольких простых или сложных веществ образуется сложное. Например:

СаО + Н2О = Са(ОН)2

разложения – реакции, в ходе которых в результате взаимодействия простого и сложного вещества образуется несколько других простых и сложных. Например:

СаСО3 = СаО + СО2↑

замещения – реакции, в ходе которых в результате взаимодействия простого и сложного вещества образуется другое простое и другое сложное вещество. Например:

2Al = 3CuCl2 = 2AlCl3 + 3Cu


Страница: