Характеристика абсорбционных методов очистки отходящих газов от примесей кислого характера
,
,
где и - диффузионные критерии Нуссельта для газа и жидкости; и - диффузионные критерии Прандтля для газа и жидкости; и - критерии Рейнольдса для газа и жидкости; и - коэффициенты массоотдачи со стороны газа и жидкости, м/с; - поверхностно-объемный диаметр пузырьков газа, м (; и - коэффициенты молекулярной диффузии SO в газе и жидкости, м/с; и - кинематические коэффициенты вязкости газа и жидкости, м/с; и - скорость газа и жидкости а газожидкостном слое, м/с.
В связи с низкой растворимостью диоксида серы в воде для очистки требуется большой ее расход и абсорберы с большими объемами. Удаление SO из раствора ведут при нагревании его до 100С. Таким образом, проведение процесса связано с большими энергозатратами.
2.1.2 Известняковые и известковые методы
Достоинством этих методов является простая технологическая схема, низкие эксплуатационные затраты, доступность и дешевизна сорбента, возможность очистки газа без предварительного охлаждения и обеспыливания.
На практике применяются известняк, мел, доломиты, мергели. Известь получают обжигом карбонатных пород при температуре 1100 - 1300С.
Процесс абсорбции диоксида серы для известкового и известнякового методов представляется в виде следующих стадий:
,
,
,
,
,
,
Протекание тех или иных реакций зависит от состава и рН суспензии. В присутствии в растворе различных примесей процесс абсорбции значительно усложняется. Например, действие небольших количеств повышает степень очистки и степень использования известняка. При этом протекают следующие реакции:
Для расчета равновесия при использовании солей кальция предложены эмпирические уравнения:
для системы :
для системы :
для системы
.
2.1.3 Магнезитовый метод
Диоксид серы в этом случае поглощают оксид – гидрооксидом магния. В процессе хемосорбции образуются кристаллогидраты сульфита магния, которые сушат, а затем термически разлагают на -содержащий газ и оксид магния. Газ перерабатывают в серную кислоту, а оксид магния возвращают на абсорбцию.
В абсорбере протекают следующие реакции:
Растворимость сульфита магния в воде ограничена, избыток его в виде и выпадает в осадок. Технологическая схема процесса представлена на рис. 1.
Рис. 1. схема установки очистки газа от диоксида серы суспензией оксида магния: 1 – абсорбер; 2 – нейтрализатор; 3 – центрифуга; 4 – сушка; 5 – печь.
Дымовые газы поступают в абсорбер Вентури, орошаемый циркулирующей суспензией. Отношение Т:Ж в суспензии 1:10, рН суспензии на входе 6,8 – 7,5, а на выходе из абсорбера 5,5 – 6. состав циркулирующей суспензии (в %): вода и примеси – 79,65.
В абсорбере кроме сульфита образуется некоторое количество сульфата:
Образование сульфата нежелательно, так как для его разложения необходима более высокая температура (1200-13000С). При таких условиях получается переобожженный , который имеет малую активность по отношению к . Для устранения образования сульфата необходимо использовать ингибиторы окисления или проводить процесс в абсорберах при малом времени контакта газ – жидкость. Другой путь – производить обжиг сульфата в присутствии восстановителей. В этом случае сульфат восстанавливается в сульфит.
Из нейтрализатора часть суспензии выводят на центрифугу для отделения кристаллогидратов солей магния. Обезвоживание солей производят в сушилках барабанного типа с мазутной копкой. Безводные кристаллы обжигают во вращающихся печах или печах кипящего слоя при 9000С, в печь добавляют кокс. При этом идет реакция: