Флуориметрический метод контроля содержания нефтепродуктов в водах
Флуориметрический метод определения нефтепродуктов в пробах вод характеризуется высокой чувствительностью, простотой аппаратурного оформления и экспрессностью.
В практике аналитического контроля качества вод под нефтепродуктами понимают неполярные и малополярные углеводороды (алифатические, ароматические, алициклические), составляющие основную и наиболее характерную часть нефти и продуктов ее переработки [1]. Содержание нефтепродуктов является одним из обобщенных показателей, характеризующих качество вод. Для питьевых вод предельно допустимая концентрация (ПДК) составляет 0,1 мг/дм3 [2]. Загрязнение нефтепродуктами является наиболее типичным и весьма опасным фактором воздействия хозяйственной деятельности человека на окружающую среду.
Основными методами количественного химического анализа, применяемыми в настоящее время при определении нефтепродуктов в водах, являются гравиметрический, ИК-спектроскопический, газохроматографический и флуориметрический.
Гравиметрический метод основан на экстракции нефтепродуктов из пробы, очистке экстракта от полярных веществ, удалении экстрагента путем выпаривания и взвешивании остатка. Он используется, как правило, при анализе сильно загрязненных проб и не может использоваться при анализе проб, содержащих нефтепродукты на уровне ПДК, поскольку нижняя граница диапазона измерений составляет 0,3 мг/дм3 при объеме анализируемой пробы 3-5 дм3. Несомненным достоинством метода является то, что не требуется предварительная градуировка средства измерений В силу этого метод принят в качестве арбитражного.
Метод ИК-спектроскопии основан на экстракции нефтепродуктов из пробы четыреххлористым углеродом или хладоном 113, очистке экстракта от полярных соединений методом колоночной хроматографии на оксиде алюминия и последующей регистрации поглощения излучения в области спектра 2700-3200 см-1, обусловленного валентными колебаниями СН3 и СН2 групп алифатических и алициклических соединений и боковых цепей ароматических углеводородов, а также связей СН ароматических соединений.
Метод может быть реализован как в варианте регистрации спектра поглощения в указанной области с помощью традиционного или Фурье-спектрометра, так и более простом варианте, при котором используется анализатор, измеряющий интегральное поглощение излучения в области 2900-3000 см-1, в которой наблюдаются наиболее интенсивные полосы поглощения, соответствующие асимметричным валентным колебаниям групп СН3 и СН2.
Метод требует обязательной градуировки средства измерений с использованием стандартных образцов состава раствора нефтепродуктов в четыреххлористом углероде. В России используются стандартные образцы, приготовленные на основе так называемой трехкомпонентной смеси (37,5% гексадекана, 37,5% 2,2,4-триметилпентана и 25% бензола по массе). Нижняя граница диапазона измерения - 0,05 мг/дм3. Основное достоинство метода - слабая зависимость аналитического сигнала от типа нефтепродукта, составляющего основу загрязнения пробы.
Трудности, возникающие при использовании метода, связаны с мешающими влияниями липидов и других полярных соединений при их высоком содержании, при котором оказывается исчерпанной емкость хроматографической колонки, используемой для очистки экстракта. Основной недостаток метода - его неэкологичность, обусловленная применяемыми высокотоксичными растворителями. В силу указанных причин мы полагаем, что уже в ближайшие годы неизбежна замена метода ИК-спектроскопии другими методами и в первую очередь методом газовой хроматографии.
В России ИК-спектроскопический метод стандартизован для анализа питьевых вод [3], а также изложен в ряде нормативных документов на методики выполнения измерений [4-6] и рассматривается в качестве основного, а в ряде случаев и единственного метода определения нефтепродуктов (например, [7]). Международный стандарт несмотря на многолетние разработки, не утвержден и не введен в действие.
Метод газовой хроматографии основан на разделении углеводородов нефти на неполярной фазе в режиме программирования температуры. Нефтепродукты экстрагируют из пробы органическим растворителем (четыреххлористый углерод или гексан), полученный экстракт очищают методом колоночной хроматографии на оксиде алюминия и очищенный экстракт анализируют. Аналитическим сигналом является суммарная площадь пиков на хроматограмме, начиная с пика н-декана (С10Н22) и кончая пиком н-тетраконтана (С40Н82). Градуировка проводится с использованием смеси дизельного топлива и смазочного масла [8].
Нижняя граница диапазона измерений согласно стандарту ИСО 9377-2:2000 составляет 0,1 мг/дм3, хотя известны конкретные реализации методики (например, методика разработанная ГУП ЦИКВ, С.-Петербург), в которых эта граница составляет всего 0,02 мг/дм3. Таким образом, метод газовой хроматографии пригоден для анализа проб, содержащих нефтепродукты на уровне ПДК. Продолжительность регистрации хроматограммы составляет 20-30 мин.
Флуориметрический метод основан на экстракции нефтепродуктов гексаном, очистке при необходимости экстракта с последующим измерением интенсивности флуоресценции экстракта, возникающей в результате оптического возбуждения. Метод отличается высокой чувствительностью (нижняя граница диапазона измерений 0,005 мг/дм3), экспрессностью, малыми объемами анализируемой пробы (табл. 1) и отсутствием значимых мешающих влияний липидов. Методика определения нефтепродуктов флуориметрическим методом изложена в нормативных документах [9, 10].
Таблица 1
Некоторые характеристики методов определения нефтепродуктов в водах
Наименование характеристики |
Метод | ||
Флуориметрический |
ИK-спектроскопический |
Газохроматографический | |
Источник информации |
[9] |
[3] |
[8] |
Диапазон измерения, мг/дм3 |
0,005-50 |
0,05-50 |
0,1-150 |
Объем пробы, см3 |
100 |
до 2000 |
1000 |
Экстрагент |
Гексан |
Четыреххлористый углерод |
Гексан |
Состав образца для градуировки |
Масло Т-22 |
Трехкомпонентная смесь |
50% дизельного топлива + 50% смазочного масла |
В формировании аналитического сигнала участвуют только ароматические углеводороды. Поскольку они обладают различными условиями возбуждения и регистрации флуоресценции, наблюдается изменение спектра флуоресценции экстракта в зависимости от длины волны возбуждающего света.
При возбуждении в ближней УФ, а тем более в видимой области спектра, флуоресцируют только полиядерные углеводороды. Поскольку их доля мала и зависит от природы нефтепродукта, наблюдается очень сильная зависимость аналитического сигнала от типа нефтепродукта (рис. 1). Приведем цитату из монографии Ю.Ю. Лурье [11] по этому поводу: "Способностью люминесцировать под действием УФ-излучения обладает лишь часть углеводородов (ароматические высокомолекулярные, особенно полициклические) и притом в разной мере. Для получения достоверных результатов необходимо иметь стандартный раствор, содержащий те же люминесцирующие вещества и в тех же относительных количествах, как и в исследуемой пробе. Это труднодостижимо. Проще устанавливать "цену деления" применяемого прибора сравнением с результатом, полученным одним из арбитражных методов". Аналогичные по существу выводы сделаны и в книге В. Лейте [12]. Таким образом, флуориметрический метод определения нефтепродуктов, основанный на регистрации флуоресценции в видимой области спектра, не пригоден для массовых аналитических измерений.