Физические методы дегазации воды
Разновидностью барботажных дегазаторов являются дегагаторы пенноготипа (рис. 19.2,в).
Рис. 19.7. Растворимость сероводорода в воде в зависимости от ее температуры при его парциальном давлении 0,1 МПа.
пленочный дегазатор вода деаэратор
Основным конструктивным элементом аппаратов служит перфорированная пластина (решетка). Вода тонким слоем протекает вдоль решетки и под действием поперечного тока воздуха, подаваемого через ее отверстия, вспенивается. В пенном слое газы из воды десорбируются интенсивно. При удалении диоксида углерода(IV) и расходе воды около 100 м3/ч дегазаторы пенного типа наиболее экономичны. При использовании аппаратов этого типа степень десорбции целесообразно ограничить 96 . 97% с тем, чтобы количество полок не превышало четырех-пяти. При этом для подачи воздуха можно применять центробежные вентиляторы среднего давления.
Таблица 19.3
Производительность дегазатора, М3/Ч |
А, м2 |
А0.324,м2 |
10 |
0,167 |
0,56 |
20 |
0,334 |
0,70 |
30 |
0,501 |
0,80 |
40 |
0,668 |
0,88 |
50 |
0,835 |
0,94 |
75 |
1,25 |
1,07 |
100 |
1,67 |
1,18 |
150 |
2,50 |
1,35 |
200 |
3,34 |
1,48 |
250 |
4,17 |
1,59 |
300 |
5,01 |
1,68 |
350 |
5,83 |
1,77 |
400 |
6,68 |
1,85 |
450 |
7,50 |
1,92 |
500 |
8,35 |
1,99 |
600 |
10,0 |
2,11 |
700 |
11,7 |
2,22 |
800 |
13,4 |
2,32 |
900 |
15,0 |
2,40 |
1000 |
16,7 |
2,49 |
Вакуумные дегазаторы выполняют стальными круглыми (в плане), с конусным днищем (рис. 19.2,6). Над конусным днищем располагается дырчатый лист (с отверстиями диаметром 15 . 20 мм) или решетка, которая является опорой для колец Рашига. Вода внутрь дегазатора подается устройством, обеспечивающим тонкое распыление и равномерное распределение ее по поверхности насадки. В качестве такого распределителя воды рекомендуется устройство, аналогичное распределителю соляного раствора в стандартных натрий-катионитовых фильтрах.
Для наблюдения за уровнем воды в дегазаторе устанавливают водомерное стекло. Парогазовая смесь отводится из дегазатора вакуумным устройством, в качестве которого могут быть использованы вакуум-насосы, паро- и водоструйные эжекторы.
Наиболее полная дегазация достигается разбрызгиванием в вакууме с одновременным подогревом воды. На рис. 19.8 изображена схема установки для дегазации в вакууме с подогревом и без подогрева воды.
Выбор типа дегазатора определяется производительностью установки, необходимой полнотой дегазации, начальной концентрацией удаляемого газа и другими условиями.
Рис. 19.8. Установки дегазации воды под вакуумом без подогрева ( и с подогревом (б)
1,5 — подача исходной и отвод дегазированной воды; 2 — воздухоотделитель; 3 — котел; 4 — вакуум-насос; 6 — насос; 7 — подача пара; 8 — теплообменник; 9 — сборный бак
Для глубокого или частичного удаления оксида углерода (IV) (независимо от его начальной концентрации и производительности установки) и свободного сероводорода применяют дегазаторы с насадкой из колец Рашига и противотоком воды и воздуха.
Для удаления оксида углерода (IV) при производительности установки до 150 м3/ч и начальном его содержании не более 150 мг/л используют дегазаторы с деревянной хордовой насадкой или дегазаторы пенного типа. При глубоком удалении оксида углерода (IV) и производительности до 20 м3/ч применяют барботажные дегазаторы.
В случае частичного удаления оксида углерода(IV) при производительности установки до 50 м3/ч используют струйно- пленочные (контактные) градирни, а для глубокого или частичного обескислороживания воды — вакуумные установки с насадкой из колец Рашига с подогревом или без него.
При проектировании дегазаторов должны быть определены: площадь поперечного сечения дегазатора; необходимый расход воздуха и поверхность насадки для достижения требуемой степени дегазации. Площадь поперечного сечения дегазаторов вычисляют по допускаемой плотности орошения насадки, т. е. по расходу воды, приходящемуся на 1 м2 площади поперечного сечения дегазатора.
По А. А. Кастальскому, допустимые плотности орошения насадок и удельные расходы воздуха составляют: при глубоком удалении из воды оксида углерода (IV) — до 2 . 3 мг/л; на дегазаторах, загруженных кольцами Рашига (25X25X3 мм), — 60 м3/(м2*ч) и 15 м3/м3; на дегазаторах с деревянной насадкой — соответственно 40 м3/(м2*ч) и 20 м3/м3; при глубоком удалении из воды сероводорода на дегазаторах загруженных кольцами Рашига, — 40 м3/(м2*ч) и 20 м3/м3; при обескислороживании воды на вакуумных дегазаторах плотность орошения насадки равна 50 м3/(м2-ч).
Остаточное содержание оксида углерода(IV) после вентиляторной градирни при температуре 5 .8°С можно принимать 3 .5 мг/л, после контактной градирни — 5 . 8 мг/л.
Полное обескислороживание воды может быть достигнуто методом, предложенным П. А. Акользиным. Сущность его заключается в том, что эжектор, подающий воду, из которой необходимо удалить кислород, подсасывает предварительно обескислороженный воздух. Под влиянием разности концентрации растворенный в воде кислород переходит из жидкой фазы в газообразную. Газ отделяется от воды в специальном десорбере и затем в сепараторе. Обескислороживание воздуха происходит в герметичном реакторе, загруженном древесным углем и омываемом топочными газами с температурой 500 . 800 °С. Однако применение этого метода ограничивается тем, что для обескислороживания воздуха, подсасываемого эжектором, необходимы топочные газы высокой температуры, т. е. наличие котельной. Кроме того, в дегазаторе не удается одновременно с обескислороживанием воды обеспечить необходимую степень удаления оксида углерода (IV).