Физико-химические методы анализа веществ
Рефераты >> Химия >> Физико-химические методы анализа веществ

Химическая идентификация вещества базируется в основном на реакциях осаждения, комплексообразования, окисления и восстановления, нейтрализации, при которых происходит выпадение окрашенного осадка, изменение цвета раствора или выделение газообразных веществ.

3. Количественный анализ

Определение содержания (концентрации, массы и т.п.) компонентов в анализируемом веществе называется количественным анализам. При количественном анализе измеряют интенсивность аналитического сигнала, т.е. находят численное значение оптической плотности раствора, расхода раствора на титрование, массы прокаленного осадка и т.п. По результатам количественного измерения сигнала рассчитывают содержание определенного компонента в пробе. Результаты определений обычно выражают в массовых долях, %.

Количественный анализ проводят в определенной последовательности, в которую входит отбор и подготовка проб, проведения анализа, обработка и расчет результатов анализа.

4. Классификация методов количественного анализа

Все методы количественного анализа можно разделить на две большие группы: химические и инструментальные. Это разделение условно, так как многие инструментальные методы основаны на использовании химических законов и свойств веществ. Обычно количественные методы анализа классифицируют по измеряемым физическим или химическим свойствам.

Измеряемая величина (свойство)

Название метода

Масса вещества, доступная измерению

Масса

Объем

Плотность

Поглощение или испускание инфракрасных лучей

Колебания молекул

Поглощение или испускание видимых ультрафиолетовых и рентгеновских лучей.

Колебания атомов.

Рассеяние света

Диффузионный ток на электроде

Электродный потенциал

Количество электричества

Электрическая проводимость

Радиоактивность

Скорость реакции

Тепловой эффект реакции

Вязкость

Поверхностное натяжение

Понижение температуры замерзания

Повышение температуры кипения

Гравиметрический

Масс-спектрометрический

Титриметрический

Газоволюметрический

Денсиметрический

Инфракрасная спектроскопия

Комбинационное рассеяние

Спектральный и рентгеноспектральный

Фотометрический (колориметрия, спектрофотомерия и другие) Атомно-адсорбционная спектроскопия

Люминесцентный

Полярография и вольтамперометрия

Потенциометрический

Кулонометрический

Кондуктометрический

Радиоактивных индикаторов

Кинетический

Каталитический

Термометрия

Калориметрия

Вискозиметрический

Тензометрический

Криоскопический

Эбуллиоскопический

От макро- (0,5-1г, 10-100 мл) до ультра микроколичеств (>1мг, 0,1мл)

Микроколичества (1-5мг, 01-0,5мл)

От макро- до ультрамикроколичеств

>>

Макро- и микроколичества

>>

>>

Полумикро- (10-50 мг, 1-5мл) и микроколичества

>>

Микроколичества

>>

Полумикро- и микроколичества

Макро- и микроколичества

Микро- и ультрамикроколичества

Макро- и микроколичества

От макро- до ультрамикроколичеств

Макро и микроколичества

>>

Макроколичества

>>

>>

>>

>>

>>

>>

5. Гравиметрический метод

Сущность метода заключается в получении труднорастворимого соединения, в которое входит определяемый компонент. Для этого навеску вещества растворяют в том или ином растворителе, обычно воде, осаждают с помощью реагента, образующего с анализируемым соединением малорастворимое соединение с низким значением ПР. Затем после фильтрования осадок высушивают, прокаливают, взвешивают. По массе вещества находят массу определяемого компонента и проводят расчет его массовой доли в анализируемой навеске.

Имеются разновидности гравиметрического метода. В методе отгонки анализируемый компонент выделяют в виде газа, который взаимодействует с реактивом. По изменению массы реактива судят о содержании определяемого компонента в навеске. Например, содержание карбонатов в породе можно определить путем воздействия на анализируемый образец кислотой, в результате которого выделяется СО2:

СО32- + 2Н+ Û Н2СО3 Û Н2О + СО2

Количество выделившегося СО2 можно определить по изменению массы вещества, например СаО, с которым реагирует СО2.

Одним из основных недостатков гравиметрического метода является его трудоемкость и относительно большая продолжительность. Менее трудоемким является электрогравиметрический метод, при котором определяется металл, например медь, осаждают на катоде (платиновой сетке)

Cu2+ + 2e- = Cu

По разности массы катода до и после электролиза определяют массу металла в анализируемом растворе. Однако этот метод пригоден лишь для анализа металлов, на которых не выделяется водород (медь, серебро, ртуть).

6. Титриметрический анализ

Сущность метода заключается в измерении объема раствора того или иного реагента, израсходованного на реакцию с анализируемым компонентом. Для этих целей используют так называемые титрованные растворы, концентрация которых (титр) известны. Титром называется масса вещества, содержащегося в 1 мл титрованного раствора (г/мл). Определение проводят способом титрования, т.е. постепенного приливания титрованного раствора к раствору анализируемого вещества, объем которого точно измерен. Титрование прекращается при достижении точки эквивалентности, т.е. достижения эквивалентности реагента титруемого раствора и анализируемого компонента.

Существует несколько разновидностей титриметрического анализа: кислотно-основное титрование, осадительное титрование, комплексонометрическое титрование и окислительно-восстановительное титрование.

В основе кислотно-основного титрования лежит реакция нейтрализации

Н+ + ОН- Û Н2О

Метод позволяет определить концентрацию кислоты или катионов, гидролизирующихся с образованием ионов водорода, титрованием раствором щелочи или определить определить концентрацию оснований, в том числе анионов, гидролизирующихся с образованием гидроксид-ионов титрованием растворов кислот. Точка эквивалентности устанавливается при помощи кислотно-основных индикаторов, изменяющих окраску в определенном интервале рН. Например, методом кислотно-основного титрования можно определить карбонатную жесткость воды, т.е. концентрацию НСО3- в воде путем титрования ее раствора HCl в присутствии индикатора метилового оранжевого

НСО3- + Н+ Û Н2О + СО2

В точке эквивалентности желтая окраска индикатора переходит в бледно-розовую. Расчет производится по уравнению закона эквивалентов

Сэк.НСО3-·V1= Сэк.HCl·V2,

Где V1,V2 – объемы анализируемого и титрованного растворов; Сэк.HCl - нормальная концентрация эквивалентов вещества HCl в титрованном растворе; Сэк.НСО3- -определяемая молярная концентрация эквивалентов ионов НСО3- в анализируемом растворе. При осадительном титровании анализируемый раствор титруется реагентом, образующим с компонентом титрованного раствора малорастворимое соединение. Точка эквивалентности определяется с помощью индикатора, образующего с реагентом окрашенное соединение, например, красный осадок Ag2CrO4 при взаимодействии индикатора К2CrO4 с избытком ионов Ag+ при титровании раствора хлорида раствором нитрата серебра.


Страница: