Учёт неидеальности растворов в кинетических исследованиях
R = k[HgCl2]n n > 1.5
хотя никаких димерных комплексов в растворе нет. Высокий порядок объясняется понижением концентрации Cl–, входящего в закомплексованность HgCl2
(30)
где р = 1 и 2, а также повышением h0 (уравнение (29)) при появлении в растворе заряженных ионов .
Более сложная задача – изучение кинетики реакций в органических растворителях. В зависимости от полярности растворителя и природы электролита в таких системах образуются различные ассоциаты, ионные пары, ионные тройники и свободные ионы. Поэтому необходимо подходить к каждой системе индивидуально, используя информацию о состоянии солей и комплексов металлов в растворе. Например, Pd(OAc)2 в бензоле и в уксусной кислоте находится в форме тримера, Pd3(OAc)6. Добавление NaOAc приводит к разрушению тримера и к образованию димерного и мономерного комплексов Na2Pd2(OAc)6 и Na2Pd (OAc)4 без образования свободных ионов. Вместе с тем очевидно, что при наличии высоких постоянных концентраций электролита и в органических растворителях (KI – метанол, LiCl – ROH) можно найти условия, при которых изменение концентрации комплекса металла – катализатора не приведёт к изменению функции закомплексованности. Наличие высокой и постоянной концентрации электролита в органических растворителях позволяет также поддерживать постоянными концентрацию ионных пар и внешнесферных комплексов в растворе при варьировании концентраций комплексов металла и реагентов.
“Идеальные” и “неидеальные” поверхности в гетерогенном
катализе
Однородной поверхностью (Лэнгмюр) называют такую поверхность, все центры которой: (1) имеют одинаковую величину константы равновесия адсорбции вещества А (), независящую от степени заполнения поверхности Θi (одинаковые ΔGa и ΔHa адсорбции), (2) одинаково способны взаимодействовать со всеми молекулами – участниками реакции (один центр – одна молекула), а адсорбированные частицы не влияют на адсорбцию друг друга. В ходе лэнгмюровской адсорбции возникает идеальный адсорбированный слой. На таких поверхностях адсорбция реагентов (образование поверхностных комплексов) описывается изотермой Лэнгмюра (31)
(31)
где bi – константа равновесия адсорбции для i-того вещества, Pi – парциальное давление i-того реагента.
В рамках теории Лэнгмюра используют также приближение равномерно- неоднородной поверхности, когда на поверхности есть несколько сортов центров (2, 3), обладающих специфическим сродством к различным молекулам (адсорбатам), но в пределах каждого сорта центров выполняются закономерности лэнгмюровской адсорбции. Тогда при адсорбции, например, Н2 и С6Н6 получим
и
При адсорбции смеси молекул (А и В), когда адсорбция А требует несколько соседних центров, а адсорбция молекулы В протекает на одном центре, простые представления Лэнгмюра уже не работают даже, если поверхность ведёт себя как идеальная адсорбционная поверхность. Требуется более сложный аппарат теории вероятности для описания многоцентровой адсорбции.
Несмотря на то, что наличие идеальной поверхности для большинства твёрдых адсорбентов и катализаторов представляется маловероятным и многочисленные эксперименты подтверждают скорее неоднородность поверхности, представления Лэнгмюра нашли широкое применение для описания кинетики промышленных процессов (кинетика Лэнгмюра-Хиншельвуда). Предполагают, что это связано с тем, что в промышленных условиях большинство процессов протекает в области средних и высоких заполнений поверхности, когда наличие наиболее активных центров (с другими значениями ΔGa и ΔHa) уже не чувствуется. Скорость поверхностной реакции, являющейся лимитирующей стадией,
или в виде
запишется по Лэнгмюру-Хиншельвуду уравнением (32)
(32)
Теория катализа на неоднородных поверхностях развита Тёмкиным, Фрумкиным и Рогинским. Изучение адсорбции различных молекул на металлах и окислах показало, что во многих случаях теплота адсорбции q (q = –ΔHa) и ΔGa падает по мере заполнения поверхности. На таких поверхностях изотерма Лэнгмюра не выполняется и появляются логарифмическая изотерма Шлыгина-Фрумкина-Темкина (33) и степенная изотерма Фрейндлиха (34):
(33)
(n > 1) (34)
Рассматривают 2 модели неоднородности – биографическую неоднородность ( на катализаторе до адсорбции есть центры разного сорта) и индуцированную неоднородность, которая возникает в процессе адсорбции вследствие изменений свойств свободных центров и взаимного влияния адсорбированных частиц (латеральное взаимодействие).
Рассмотрим описание кинетики простой двухстадийной реакции на биографически неоднородной поверхности. Если на поверхности имеется несколько сортов центров с долей каждого сорта Wк, но на каждом сорте центров выполняется уравнение Лэнгмюра, получим:
и ,
где – общая доля поверхности, занятая А. Обозначим величину и Распределение центров по величинам x описывается производной:
(35)
j(x) – функция распределения центров по величине x. Величину x называют показателем десорбируемости. Установлено, что изотерме Фрейндлиха отвечает функция j(x) (36)
(36)
а логарифмической изотерме адсорбции – функция j(x) в виде константы
j(x) = const (37)
Количество центров, находящихся в интервале значений от x0 до x, определяют интегрированием выражения (35)
(38)
(39)
Если скорость лимитирующей стадии
Равна
на центрах одного сорта, то на неоднородной поверхности суммарная скорость
(40)
где величины , а для записи используют уравнение Бренстеда (), связывающее константы скорости стадии с константами её равновесия.