Транспортные процессы и гетеропереходы в твердофазных электрохимических системах
Суперионные проводники - это твердые тела, обладающие свойством быстрого ионного переноса, для которых характерна высокая ионная проводимость достигающая значений 0.1 .100 См/м. Соответственно коэффициенты диффузии подвижных ионов составляют 10»12 .10'8 м2/с. Следует отметить две фундаментальные особенности суперионных проводников, отличающих их от жидких электролитов. Во-первых - перенос заряда осуществляется только одним сортом ионов, все остальные ионы формируют жесткий каркас кристаллической решетки, и их перенос может осуществляться по механизмам точечных дефектов. Во-вторых, суперионные проводники одновременно являются электронными полупроводниками с широкой запрещенной зоной и наличием электронных типов носителей заряда: дырок и электронов. Концентрация последних зависит от наличия местных донорных и акцепторных уровней. Из этого следует, что явление переноса как в объеме суперионного проводника, так и тем более на гетеропереходах в контакте с электролитами зависят от поведения электронных и ионных подсистем и их взаимного влияния. Исследования стационарных и переходных электрохимических процессов в конкретных системах с использованием поликристаллических материалов активно ведутся во всех промышленно развитых странах с целью установления основополагающих закономерностей бурно развивающейся новой отрасли науки - ионики твердого тела, и использования последних в создании преобразователей энергии и информации нового поколения.
Однако до настоящего времени нет работ электрохимического плана, выполненных на монокристаллах. Их отсутствие не позволяет скорректировать отличающиеся на порядки удельные характеристики, полученные исследователями на порошкообразных образцах, и отдать предпочтение наиболее реальным моделям и механизмам, объясняющим явления возникновения суперионного эффекта и функционирования электрохимических систем на их основе.
Поэтому научная работа, в которой поставлены задачи получения монокристаллов в системах на основе AgJ и определения ряда фундаментальных параметров, и их взаимного влияния на транспортные свойства и контактные явления, протекающие на границе с электродами различной природы, является своевременной и важной. Настоящая работа выполнена в лаборатории твердых электролитов ИНХП АН СССР (Черноголовка) и лаборатории «Ионика твердого тела» СГТУ (г. Саратов).
Работы велись в соответствии с координационными планами научных советов РАН «Физическая химия ионных расплавов и твердых электролитов», «Электрохимия и коррозия», а также на хоздоговорной основе в соответствии с тематическими планами производственных объединений «Позитрон» (Минэлектронпром), «Маяк» (Минэлектротехпром), «Сигнал» МАП, Института Общей физики АН СССР и по договорам о творческом сотрудничестве с институтами ФТИ им. А.Ф. Иоффе АН, МГУ, Латвийским университетом.
Цель работы заключается в установлении фундаментальных закономерностей транспортных свойств в твердофазных электрохимических системах, включающих суперионные монокристаллы с униполярной проводимостью по ионам серебра.
Поставленная цель достигается решением следующих задач:
• Поиск и исследование систем с целью разработки технологии получения чистых и совершенных монокристаллов на основе AgJ.
• Экспериментальные, исследования термодинамических, электрохимических, оптических свойств.
• Экспериментальные и теоретические исследования особенностей кинетики переноса основных и не основных носителей заряда.
• Экспериментальные и теоретические исследования кинетики аддитивного окрашивания суперионных монокристаллов в парах иода.
Экспериментальное и теоретическое исследование гетеропереходов с чистыми и легированными суперионными проводниками.
Научная новизна и основные защищаемые положения
Впервые поставлена и решена проблема комплексного анализа структурных, оптических, термодинамических, электрохимических свойств суперионных проводников в монокристаллическом состоянии и процессов, протекающих с их участием на гетеропереходах. При этом получены следующие новые научные результаты:
Исследована система MJ-AgJ-CH3COCH3, и на основании полученных результатов разработан оригинальный метод выращивания монокристаллов суперионных проводников Ag4RbJ5, Ag+KJs, AgJ высокой чистоты.
Проведены исследования фазовых переходов. Экспериментально доказано, что фазовый переход в Ag4RbJs при 208К относится к переходам 5 первого рода. Исследована доменная структура, возникающая при температуре ниже 208 К. Показано, что размер доменов фазе определяется температурой и не носит релаксационного характера. Обнаружено, что при фазовом переходе 122К скрытая теплота выделяется в два этапа.
Обнаружен и исследован эффект аддитивного окрашивания монокристаллов AgiRbJs в парах йода. Предложена и экспериментально доказана модель образования центров окраски при нормальных условиях.
Проведены исследования диффузии центров окраски в Ag4RbJ5. Обнаружено влияние аддитивного окрашивания на электронную проводимость.
Проведены исследования процессов диффузии меченых атомов (Ag и J) на монокристаллах AgtRbJs. Получены температурные зависимости коэффициентов диффузии.
Проведены исследования электрохимических закономерностей на гетеропереходах с монокристаллическим суперионным проводником Ag4RbJ5. Обнаружено, что параметры гетероперехода, описывающие кинетику не основных носителей, зависят от кристаллографического направления.
Проведено исследование методом потенциодинамической вольтамперометрии и импеданса монокристалла на границе с обратимыми, инертными и необратимыми электродами. Предложены эквивалентные схемы, удовлетворительно описывающие электрохимическое поведение процессов на гетеропереходах. Рассчитаны энергии активации отдельных стадий электрохимических процессов.
Установлена взаимосвязь структуры, оптических свойств с электрохимическими. Обнаружено влияние дефектности структуры на ионную и электронную составляющие проводимости в диапазоне ОС. температур и концентраций.
Положения работы, выносимые на защиту.
Проведенные экспериментальные и теоретические исследования позволяют вынести на защиту следующие основные научные положения и результаты.
Исследования системы MJ-AgJ-СНзСОСНз и способ получения монокристаллов А&ДЫ5, Ag4KJ5, AgJ.
Термодинамические и оптические характеристики фазовых переходов.
Модель образования центров окраски при воздействии иода на монокристаллы суперионика. Экспериментальное подтверждение предложенной модели. Кинетические характеристики центров окраски и их влияние на проводимость.
Экспериментальные результаты определения параметров гетеропереходов с йодом и йодными комплексами. Установленные закономерности кинетики и механизма электродных процессов, протекающие на гетеропереходах с участием основных носителей заряда.
Экспериментальные результаты определения энергии активации ионной и электронной составляющих проводимости монокристаллов.
Экспериментальные исследования процессов диффузии серебра-ПО, иода-131, центров окраски.