Термодинамико-топологический анализ
(а) (б)
Рис.3. Взаимное расположение изотермоизобарического многообразия, векторов ноды жидкость–пар и градиентов температуры (а) и давления (б) в трехкомпонентных системах.
Из сравнения уравнений (10) и (11) следует частный вывод. Для некоторого вектора состава жидкой фазы отнимем одно уравнение от другого. При определенных и получим следующий результат [8]:
(14)
или:
(15)
Поскольку и – некоторые скалярные множители, то для закрепленного состава системы градиенты стационарного поля температур кипения при и градиенты стационарного поля давлений при колинеарны. Последнее согласуется с физическим смыслом, так как в этом случае точка состава смеси принадлежит определенному изотермоизобарическому многообразию, которое является многообразием уровня как для температуры, так и для давления. Однако векторы имеют разный знак, и их линейная (в точке) комбинация всегда равна нулю:
(16)
Следовательно, эти два вектора всегда лежат на одной прямой, ортогональной многообразию уровня, и имеют противоположное направление.
Подробное исследование уравнений (10) и (11) было проведено в [8]. Отмечено, что полученные результаты можно использовать для выявления различных корреляций и тонких закономерностей фазового равновесия жидкость–пар в многокомпонентных системах, в частности:
- для определения взаимосвязи топографического представления равновесной температуры кипения смеси и хода -линий, в том числе единичных;
- для определения экстремумов температуры (давления) по направлению;
- для корреляции хода изотермоизобар и коэффициентов распределения компонентов;
- для получения некоторых общих выводов относительно различных термодинамических свойств путём исследования полученных уравнений в избыточных функциях.
Подробное исследование свойств скалярных полей равновесных температур двухфазных трехкомпонентных систем было проведено в [9-11].
Вывод
Таким образом, можно сделать вывод, что исследование особенностей хода векторного поля нод и скалярного поля равновесных температур позволяет установить уравнение их взаимосвязи. Анализ уравнения и экспериментальные исследования показывают, что в случае идеальной паровой фазы наблюдается совпадение хода единичных α-многообразий и многообразий условных экстремумов поверхности равновесных температур конденсации. Изучение хода складок на поверхности равновесных температур многокомпонентных смесей играет определяющую роль в процессе экстрактивной ректификации. Уравнение взаимосвязи позволяет существенно оптимизировать разработку химико-технологических процессов на этапе качественного анализа, когда выявляются особенности структуры концентрационного пространства исходной разделяемой смеси, обуславливающие выбор схемы процесса.
Список литературы
1. Серафимов Л.А. Теоретические принципы построения технологических схем ректификации неидеальных многокомпонентных смесей // Автореф. докт.д.исс. – М.: МИТХТ. 1968. -44 с.
2. Жаров В.Т., Серафимов Л.А. Физико-химические основы дистилляции и ректификации. – Л.: Химия. 1975. -239 с.
3. Серафимов Л.А. Термодинамико-топологический анализ и проблемы разделения многокомпонентных полиазеоторопных смесей // Теорет. основы хим. технологии. 1987. Т.21. № 1. сс.74–85.
4. Тимофеев В.С., Серафимов Л.А. Принципы технологии основного органического и нефтехимического синтеза: Учебное пособие для вузов. – М.: Химия. 1992. -452 с.
5. Серафимов Л.А., Тимофеев В.С., Писаренко Ю.А., Солохин А.В. Технология основного органического и нефтехимического синтеза. Совмещенные процессы. – М.: Химия. 1993. -412 с.
6. Серафимов Л.А. Термодинамико-топологический анализ диаграмм гетерогенного равновесия многокомпонентных смесей // Журн. физ. химии. 2002. Т.76. № 8, сс.1351–1365.
7. Сторонкин А.В. Термодинамика гетерогенных систем. В 2 ч.Л.: ЛГУ. 1967. -447 с.
8. Серафимов Л.А., Фролкова А.К. Исследование модифицированной формы уравнения Ван-дер-Ваальса–Сторонкина // Теорет. основы хим. технологии. 1999. Т.33. № 4. сс.341–349.