Тепловые эффекты химических реакций
На рис. 1 и 2 представлено изменение ; и в зависимости от температуры, а также определение при Т1 = 310 К.
Строим графики зависимостей:
и
Определяем графически, как при и сравниваем полученный результат с рассчитанным по формуле
по модулю
Самостоятельная работа № 2
Вариант № 8
В таблице 1 для некоторого чистого вещества приведены молекулярная масса (кг/кмоль), плотности в твердом и жидком состояниях (и в кг/м3) при температуре трехфазного равновесия (тройная точка), и экспериментальные данные [2] по упругости паров над твердым и жидким веществом при разных температурах. Необходимо:
1) по графикам зависимостей от или аналитически рассчитать численные значения постоянных коэффициентов в интегральных уравнениях Клаузиуса — Клапейрона
2) вычислить средние для исследованных интервалов температур теплоты испарения, возгонки и плавления; определить координаты тройной точки (параметры трехфазного равновесия);
3) вычислить величину , характеризующую наклон линии фазового равновесия "" в тройной точке;
4) построить диаграмму фазовых равновесий вещества;
5) вычислить температуру плавления вещества при заданном внешнем давлении Р (Па) и оценить нормальную температуру кипения;
6) рассчитать изменение внутренней энергии, энтальпии, свободных энергий Гиббса и Гельмгольца для процесса равновесной возгонки 1 моля вещества при температуре тройного равновесия.
Таблица 1
Вариант |
Твёрдое состояние |
Жидкое состояние |
Условия | ||
|
|
|
| ||
8 |
276,6 278,2 279,2 280,2 281,4 |
1413 1706 1879 2066 2372 |
277,2 279,2 281,4 283,2 285,2 288,7 |
1826 2082 2372 2626 2932 3279 |
; ; ;
|
Решение:
1. Интегрирование уравнения Клаузиуса — Клапейрона в предположении постоянства теплот испарения и возгонки , дает выражения:
потенцирование, которых приводит к зависимости в явном виде давлений насыщенных паров от температуры:
Графики линейных зависимостей от представлены на рис. 3 по данным, приведенным в табл. 5.
По положению прямых на рис. 3 возможно графическое определение постоянных А и В в уравнениях . После чего теплоты испарения и возгонки можно определить из соотношений: и . Такие расчеты связаны с ошибками из-за достаточно произвольного проведения прямых линий по экспериментальным точкам.
Для более точного аналитического расчета параметров уравнения Клаузиуса — Клапейрона воспользуемся методом наименьших квадратов. Постоянные А и В уравнения , где и , можно рассчитать из известных соотношений:
Таблица 5
Равновесие твёрдое вещество — газ | |||||||
|
|
|
|
|
|
|
|
1 |
1413 |
7,2535 |
276,6 |
0,00361 |
1,300×10–5 |
0,0261 |
1421 |
2 |
1706 |
7,4419 |
278,2 |
0,00359 |
1,288×10–5 |
0,0267 |
1687 |
3 |
1879 |
7,5385 |
279,2 |
0,00358 |
1,281×10–5 |
0,0271 |
1877 |
4 |
2066 |
7,6334 |
280,2 |
0,00356 |
1,267×10–5 |
0,0274 |
2086 |
5 |
2372 |
7,7715 |
281,4 |
0,00355 |
1,260×10–5 |
0,0279 |
2365 |
n = 5 |
37,6388 |
0,01789 |
6,396∙10–5 |
0,1352 |