Теория хроматографии, хроматографический анализ, виды хроматографии
R = f(c) преобразуется электрической схемой катарометра в электрический аналитический сигнал, который выводится на регистратор, выписывающий зависимость в виде пика хроматограммы.
В качестве регистратора используют самопишущий потенциометр или более современное устройство хранения и математической обработки информации - персональный компьютер.
ПИД состоит из водородной горелки, расположенной между двумя электродами. При сгорании компонентов в пламени горелки происходит их ионизация, а в электрической схеме ПИД возникает ток ионизации, пропорциональный концентрации компонентов в смеси. Зависимость тока ионизации от концентрации выводится на регистратор. В современных хроматографах аналоговый сигнал с детектора поступает на аналогово-цифровой преобразователь, информация с которого обрабатывается персональным компьютером. С помощью ПК удается автоматизировать весь хроматографический анализ.
Для проведения газовой хроматографии используют газовые хроматографы различных моделей.
Жидкостная хроматография может проводиться в колоночном и плоскостном вариантах. По механизму разделения жидко-твердую хроматографию называют также жидкостной адсорбционной, а жидкость-жидкостную - просто распределительной.
В колоночной жидкостной адсорбционной хроматографии в качестве НФ применяют поверхностно-пористые адсорбенты (ППА). ППА - это твердые сферические зерна (например, стеклянные шарики), на поверхность которых наносят силикагель, оксид алюминия или некоторые полимеры, обеспечивающие слой с высокой пористостью толщиной около 1 мкм. ПФ - это растворитель, который должен хорошо растворять все компоненты анализируемой смеси, быть химически инертным по отношению к ним, адсорбенту и кислороду воздуха, быть маловязким. Как и в газовой хроматографии, анализ проводят по времени удерживания и площади пика. При этом детектироваться может разность показателей преломления между чистым растворителем и раствором после прохождения через колонку (рефрактометрический детектор) или разность в светопоглощении в видимой (фотометрический детектор), УФ - или ИК - лучах.
В колоночном варианте распределительной хроматографии ПФ служит органический растворитель, не смешивающийся с НФ. НФ обычно служит вода, адсорбированная на твердом носителе. В качестве носителей чаще используют силикагель (твердая кремниевая кислота), целлюлозу, крахмал и другие вещества, хорошо удерживающие молекулы воды на своей поверхности.
Эффективность колонки связана с вязкостью, коэффициентом диффузии и другими физическими свойствами жидкостей. Хроматографирование на колонке особо вязких жидкостей - длительный процесс, поскольку их продвижение через пористый носитель под действием силы тяжести очень мало. Для ускорения процесса хроматографирование проводят под давлением, создаваемsv насосом высокого давления. Применение давления сделало метод более динамичным и эффективным, что и отразилось в его названии - высокоэффективная жидкостная хроматография (ВЭЖХ).
Плоскостным вариантом жидкостной адсорбционной хроматографии является тонкослойная хроматография (ТСХ), а жидкость-жидкостной - бумажная (БХ). ТСХ и БХ очень близки по технике выполнения. НФ (силикагель, крахмал, целлюлоза, Al2O3 и др.) в ТСХ наносится тонким слоем на стеклянную, металлическую (алюминиевую фольгу) или пластиковую пластинку, а в БХ в качестве НФ обычно служит вода, адсорбированная на твердом носителе - специальной хроматографической бумаге.
Для проведения анализа каплю анализируемой смеси наносят на стартовую линию в 2 .3 см от края пластинки или полоски бумаги и высушивают. Затем край носителя погружают в растворитель (вода, органический растворитель), который действует как ПФ. При этом растворитель не должен касаться нанесенного пятна. Носитель можно подвесить так, чтобы поток растворителя двигался сверху вниз (нисходящая хроматограмма) и наоборот (восходящая) или от центра к краям (радиальная).
Рис. 1. Способ обработки бумажной хроматографии.
Под действием капиллярных сил растворитель движется вдоль слоя сорбента и с разной скоростью переносит компоненты смеси, что приводит к их пространственному разделению. Когда фронт растворителя достигнет требуемого уровня, хроматограмму вынимают из растворителя, дают ему испариться, затем проводят проявление пятен распределившихся веществ путем опрыскивания хроматограммы реагентом с помощью пульверизатора и последующего облучения УФ-лампой. В химических методах проявления в реагент добавляют реактивы, дающие с анализируемыми веществами окрашенные соединения. В физических методах используют, например, способность некоторых веществ флуоресцировать под действием УФ - лучей, для чего в проявитель добавляют флуоресцирующий индикатор. На проявленной хроматограмме обычно измеряют расстояния, пройденные растворителем L и компонентом l за определенное время и находят величину R= l/L (рис. 1). При качественном анализе применяют метод “свидетелей”, для чего на линию старта рядом с анализируемой смесью наносят индивидуальные вещества. Сравнивая значения R индивидуальных веществ и компонентов смеси, проводят их отождествление.
Для количественного анализа измеряют обычно площади зон компонентов на хроматограмме (например, с помощью миллиметровой кальки или др.) и по заранее полученному градуировочному графику зависимости S = f(n) находят количество веществ. Но применяют и другие варианты, например, выпаривают или удаляют вещества с носителя и затем определяют их количества в объеме полученного раствора.
В основе ионообменной хроматографии лежит обратимый стехиометрический обмен ионов анализируемого раствора на подвижные ионы сорбентов, называемых ионитами или ионнообменниками. Причиной разделения является различная способность ионов анализируемого раствора к обмену.
В качестве ионитов используют природные или синтетические, твердые, нерастворимые в воде неорганические и органические высокомолекулярные кислоты, основания и их соли, содержащие в своем составе активные (ионогенные) группы. Иониты делятся на катиониты и аниониты.
Катиониты - сорбенты, способные к обмену катионами. катиониты содержат в своем составе ионогенные группы различной степени кислотности, например сульфогруппу - SO3H, карбоксильную группу - COOH, ион водорода которых способен к катионному обмену.
Химическую формулу катионитов схематично изображают RSO3-H+, RSO3-Na+ или просто [R] H, [R] Na, где R - сложный органический радикал. Наиболее часто применяются сильнокислотные катиониты марок КУ-1, КУ-2, СДВ-2 и др.
Схема катионного обмена:
[R] H + Ме+ [R] Ме + H+
Аниониты - сорбенты, способные к обмену анионами.
Аниониты содержат в своем составе основные ионогенные группы, например, аминогруппы различной степени замещения: - NH2, =NH, N, = NH2OH, NH OH, способные к обмену гидроксид-ионов на различные анионы. Формулы анионитов схематично изображают: RNH3+OH - , RNH3+Cl - или просто [R] OH, [R] Cl. Cхема анионного обмена: