Сущность окислительно-восстановительных реакций
Рефераты >> Химия >> Сущность окислительно-восстановительных реакций

- если реакции окисления-восстановления проходят в растворе, то следует учитывать влияние среды на стягивание освобождающихся ионов О с ионами Н (в кислой среде) с образованием слабо диссоциирующих молекул

Н2О, а в нейтральных и щелочных растворах ионы О реагируют с образованием гидроксид-ионов НОН + О = 2ОН .

Применяются в основном два метода составления уравнений окислительно-восстановительных реакций:

1) электронного баланса – основан на определении общего количества электронов, перемещающихся от восстановителя к окислителю;

2) ионно-электронный – предусматривает раздельное составление уравнений для процесса окисления и восстановления с последующим суммированием их в общее ионное уравнение-метод полуреакции. В этом методе следует найти не только коэффициенты для восстановителя и окислителя, но и для молекул среды. В зависимости от характера среды число электронов, принимаемых окислителем или теряемых восстановителем, может изменяться.

В некоторых случаях среда обуславливает даже изменение направления процесса, например:

в щелочной среде ( рН >7 )

HIO3 +5HI = 3I2 + 3H2O в кислой среде (pH < 7)

В нейтральной и слабощелочной среде(рН > 7)

As2O3 + 2I2 + 2H2O = As2O5 + 4HI

В кислой среде (рН <7 ).

При рН < 1 пероксид водорода является окислителем по отношению к элементарному иоду:

5Н2О2 + I2 ---- 2HIO3 + 4H2O ;

рН > 2, наоборот, HIO3 окисляет пероксид водорода :

5Н2О2 + 2НIO3 ---- I2 + 5O2 + 6H2O.

Регулируя среду, можно заставить реакцию количественно протекать в желаемом направлении. Это изменение зависит также от концентрации реагирующих веществ.

Уравнения реакций окисления-восстановления изображаются тремя последовательными стадиями : 1) начальные продукты; 2) промежуточные продукты и их стяжение ; 3) конечные продукты.

Для оформления второй стадии реакции следует знать правила стяжения :

1. Образующиеся в реакции окисления-восстановления атомы с положительной степенью окисления +4 , +5 , +6 , +7 стягиваются с ионами кислорода и образуют остатки типа ( RO4 ) , ( RO3 ) , например : SO4 , MnO4 , SO3 , CO3 , ClO4 и т.д. Исключение : С , S , Mn в нейтральной или кислой среде образуют диоксиды CO2 , SO2 , MnO2.

Дополнение : амфотерные элементы с положительной степенью окисления +2 , +3 , +4 в щелочной среде образуют гидроксокомплексы типа ( Ме(ОН)4 ) , ( Ме(ОН)6) , ( Ме(ОН)6 ).

Элементы с положительной степенью окисления –1, +2, +3 в кислой среде образуют соли.

2. Избыточные ионы кислорода ( О ) в кислой среде образуют ( стягивают ) с ионами Н малодиссоциированные молекулы воды:

О + 2Н = Н2О.

3. Избыточные ионы кислорода в нейтральной или щелочной среде стягиваются с молекулами воды, образуя ОН группы:

О + Н ОН = 2ОН .

4. Избыточные ионы водорода ( Н ) в щелочной среде стягиваются с ионами ОН, образуя молекулы воды :

Н + ОН = Н2О

5. Недостающие ионы кислорода ( О ) в кислой и нейтральной средах берутся из молекул воды с образованием ионов Н :

Н2О – О = 2Н .

6. Недостающие ионы кислорода ( О ) в щелочной среде берутся из групп ОН с образованием молекул Н2О :

2ОН - О = Н2О.

7. Недостающие ионы Н в щелочной среде берутся из молекул воды с образованием ионов гидроксила:

Н2О – Н = ОН

РЕАКЦИИ ОКИСЛЕНИЯ-ВОССТАНОВЛЕНИЯ В КИСЛОЙ СРЕДЕ

Пример 1. Окисление сульфида свинца азотной кислотой.

Схема реакции: РbS +HNO3 ---- PbSO4 + NO2 + . . .

Составляем полуреакции :

PbS + 4H2O – 8 e ----- PbSO4 + 8H

NO3 + 2H + 1 e ----- NO2 +H2O

Суммируем полуреакции, уравнивая количество отданных и принятых электронов

1 PbS + 4H2O ----- PbSO4 + 8H

8 NO3 + 2H ----- NO2 +H2O

PbS + 4H2O + 8NO3 + 16H ----- PbSO4 + 8H + 8NO2 +8H2O

Записываем в молекулярном виде, сокращая молекулы воды и стягивая ионы NO3 и H :

PbS + 8HNO3 + 8H ----- PbSO4 + 8H + 8NO2 + 4H2O

Конечный вид уравнения :

PbS + 8HNO3 == PbSO4 + 8NO2 + 4H2O

РЕАКЦИИ ОКИСЛЕНИЯ-ВОССТАНОВЛЕНИЯ В НЕЙТРАЛЬНОЙ СРЕДЕ

Пример 1. Рассмотрим реакции окисления-восстановления, протекающие в нейтральной среде по схеме

Na2SO3 + KMnO4 + H2O ----- MnO2 + Na2SO4 + SO3 + H2O – 2e ----- SO4 + 2H MnO4 + 2H2O + 3e ----- MnO2 + 4OH 3SO3 + 3H2O + 2MnO4 + 4H2O ----- 3SO4 + 6H + 2MnO2 + 3OH . Ионы H и ОН стягиваются с образованием слабо диссоциированных молекул воды: 3Na2SO3 + H2O + 2KMnO4 ----- Na2SO4 + 6H2O + 2MnO2 + 2OH 3Na2SO3 + H2O + 2KMnO4 == Na2SO4 + 2MnO2 + KOH СОСТАВЛЕНИЕУРАВНЕНИЙРЕАКЦИЙОКИСЛЕНИЯВОССТАНОВЛЕНИЯСУЧАСТИЕМСОЕДИНЕНИЙПЕРЕКИСНОГОТИПА (H2O, BaO2, H2S2, FeS2 ит. д. )

Все эти соединения содержат двухвалентные ионы ( S –S ) и (О – О),

поэтому состояние окисления каждого из атомов кислорода и серы, образующих данные цепи, равно I. При разложении H2O2 переходит в более стабильное состояние: в H2O и О2, в которых соответственно равны степени окисления кислорода (-2 ) и 0.

В окислительно-восстановительных реакциях пероксид водорода в зависимости от партнёров и условий реакции может выступать и как окислитель, и как восстановитель.

Рассмотрим реакции этих соединений на примерах пероксида водорода:

Пример 1. Н2О2 - окислитель:а) в кислой среде молекула пероксида водорода, принимая

два электрона, переходит в две молекулы воды по схеме

H2O2 +2e + 2H ----- 2H2O; H2O2 +H2 S ----- H2SO4 + …

H2O2 + 2e + 2H ----- 2H2O2

HS + 4H2O – 8e ------ SO4 + 9H

4H2O2 + 8H + HS + 4H2O ----- 8H2O + SO4 + 9H 4H2O2 + H2S + 7H ----- 4H2O + H2SO4 + 7H 4H2O2 + H2S == 4H2O + H2SO4 б) в нейтральной среде Н2О2 + 2е ----- 2ОН

ОСОБЫЕ СЛУЧАИ СОСТАВЛЕНИЯ УРАВНЕНИЙ ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫХ РЕАКЦИЙ

Если в реакции участвуют вещества, для которых сложно подсчитать степень окисления (например, В5Н11, FeAsS, органические вещества ) можно использовать метод схематического (формального) электронного баланса, суть которого заключается в том, что алгебраическая сумма зарядов в левой части уравнения реакции окисления или восстановления должна быть равна сумме зарядов в правой части этого же уравнения. Пример 1. Дана схема реакции В2Н6 + KclO3 ----- KCl + H3BO3 Определяем восстановитель и окислитель, составляем уравнение для процессов окисления и восстановления: В2Н6 – 12е + 6Н2О ----- 2Н3ВО3 + 12Н Восстановителем в этой реакции являются молекулы В2Н6, которые окисляются до борной кислоты : В2Н6 + 6Н2О ----- 2Н3ВО3 + 12Н Недостающие ионы кислорода для образования борной кислоты можно получить из молекул воды, при этом образуются ионы Н . Как нетрудно видеть, в левой части данной схемы процесса окисления имеется 0 зарядов, а в правой части – 12 положительных зарядов. Для уравнивания зарядов в обеих частях необходимо в левой части схемы отнять 12 электронов. Окислителем являются анионы ClO3 , которые превращаются в ионы Cl , принимая 6 электронов :ClO3 + 6e + 3H2O ----- Cl + 6OH . При этом освобождающиеся ионы кислорода соединяются с молекулами воды ( реакция происходит в водной среде ) , образуя ионы ОН . Затем производим балансирование уравнений процессов окисления и восстановления : 1 В2Н6 – 12е + 6Н2О ----- 2Н3ВО3 + 12Н 2 ClO3 + 6e + 3H2O ----- Cl + 6OH B2H6 + 6H2O + 2ClO3 + 6H2O ----- 2H3BO3 + 12H + 12OH + 2Cl B2H6 + 2KClO3 == 2H3BO3 + 2KCl 12H2O


Страница: