Стеклянные электроды и их приминение
Даже недостатки калориметрического метода рН-метрии и редоксметрии один и те же: необходимость отбирать пробы или «пачкать» индикатором весь раствор; невозможность или затруднительность применения в мутных или окрашенных жидкостях; адсорбция индикаторов на стенках сосуда или на твердых частицах и искажение этим данных о величине измеряемого ОП; трудность автоматизации контроля процесса на этой основе.
И как в рН-метрии, в редоксметрии этих недостатков лишен электрометрический метод определения ОП, в котором роль индикатора выполняет потенциал некоторого электрода.
Электрод мы не должны рассматривать в данном случае как некоторую редокс-систему, обладающую определенной активностью электронов.
Однако вследствие того что активности электронов в растворе и материале электрода, который представляет собой по отношению к раствору иную фазу, в общем случае не равны, возникает тенденция к переходу электронов из той фазы, где их активность больше, в ту, где она меньше. Но уход электронов, несущих отрицательный заряд, связан с заряжением фазы относительно другой. Вступают в игру электрические силы, препятствующие сколько-нибудь значительному заряжению фазы в целом. Электрическая разность потенциалов, таким образом, оказывается вполне определенным образом связанной с различием активностей электронов в электроде и растворе. эЛектрод здесь является некоторым резервуаром электронов. И только такой должна остаться его роль в идеальном случае.
Такими свойствами могут обладать металлы. Действительно, кристаллические решетки металлов построены из ионов металла, а электроны присутствуют там в виде электронного газа. Ионы металла Ox2-форма, а металл в целом - Red2-форма. Однако не всякий металлический электрод может играть роль индикаторного. Для этого не годятся растворимые металлы, активно взаимодействующие с раствором своим материалом, посылающие в раствор свои ионы.
Всем требованиям отвечают электроды из так называемых благородных металлов: платины, золота, иридия и т.п. Электроды из этих металлов и применяются наиболее часто в редоксометрии.
Если исследуемую редокс-систему удается привести в равновесие с таким электродом, то в этом, и только в этом случае измеряемый электрический потенциал электрода будет равен ОП системы.
К сожалению, лишь немногие неорганические и органические редокс-системы обладают способностью приходить в равновесие с электродами из благородных металлов (являются обратимыми по отношению к ним). Среди них системы Fe3+/Fe2+ в кислых растворах (ферри/ферро), ферриферроцианиды калия в нейтральных, слабокислых и слабощелочных растворах, системы хлор/ион хлора, бром/ион брома, йод/ион йода; из органических хинон гидрохинон и их производные и некоторые другие системы. Концентрированные и даже довольно разбавленные растворы этих систем обладают буферностью по электронам, другими словами, устойчивостью и определенностью по отношению к ОП. На основе любой из этих систем могут быть построены стандарты ОП, так как их ОП могут быть легко измерены относительно главной стандартной системы Н+/Н2.
Большинство других систем не достигают истинного равновесия с электродом, и измеряемый электродный потенциал не равен ОП системы. Это ставит перед редоксметрией определенные трудности, преодолеть которые не всегда удается*.
Есть случаи, когда электрод либо никак не реагирует на редокс-превращение, либо вызывает в самой редокс-системе побочный процесс, искажающий ее первоначальный ОП и изменяющий ее.
Так, например, упомянутые электроды из благородных металлов способны каталитически разлагать так называемые перекисные системы (перекись водорода и т.д.). ясно, что в этих случаях применять их попросту нельзя.
Существуют и другие электродные системы, которые играют роль индикаторных в редоксметрии: это электроды из различных модификаций углерода, некоторые металлы и сплавы (титан, цирконий, вольфрам, даже нержавеющая сталь и ртуть). Однако область их применения ограничена еще больше, чем область применения электродов из благородных металлов. Они могут служить индикаторными лишь в определенных растворах.
В качестве одной из самых общих причин, ограничивающих применение этих электродов в целях редоксметрии, может быть названа недостаточная индифферентность электрода по отношению к раствору. Даже электроды из благородных металлов, например в растворах с высокими ОП, могут, грубо говоря, окисляться.
Таким образом, желательным является поиск новых электродных систем, которые могли бы быть свободными от указанных недостатков. Шагом в этом направлении является открытие в 1963г. в Ленинградском университете редоксметрических стеклянных электродов (р.с.э.). Р.с.э. не пригодны ни для измерения рН, ни для измерения рМ, но способны обратимо отвечать свои потенциалом на изменение ОП раствора. Это связано с тем, что они изготавливаются из стекол особого рода, перенос тока через которые осуществляется не ионами, а электронами. Эти стекла синтезируются на основе окислов элементов, способных менять свою валентность (железо, титан), и обладают выраженным полупроводниковым характером. В растворах буферных редокс-систем р.с.э., так же как и все вышеупомянутые электроды, способны показывать правильные значения ОП.
Однако обнаружены и отличия свойств р.с.э. от других редоксметрических электродов, которые в определенных условиях могут быть расценены как их преимущества.
Главной особенностью р.с.э. является нечувствительность их потенциала к кислороду. Надо сказать, что кислородная редокс-система так или иначе присутствует во всех растворах, находящихся в соприкосновении с воздухом (аэрируемых), и, с одной стороны, может изменить соотношение Ох- и Red-форм самой системы в растворе, а с другой стороны, в какой-то мере навязать электроду свой потенциал. Любому электроду, кроме стеклянного, точнее, р.с.э. Этот факт и позволяет р.с.э. найти применение для измерения ОП в тех случаях, когда нужно знать ОП самой системы, исключая потенциал, навязываемый электроду кислородом.
Другой особенностью р.с.э. является их высокая устойчивость к воздействию сильных окислителей, с одной стороны, и отсутствие заметного каталитического воздействия на неустойчивые (например, перекисные) растворы, с другой стороны.
И еще одна важная особенность. Электроды из благородных металлов и другие редоксметрические индикаторные электроды подвержены «отравлению» так называемых каталитическими ядами. Интересно, что эти яды отравляют и живые организмы: сильная кислота, мышьяк, сероводород… Платиновый и другие электроды в присутствии этих вещвств теряют чувствительносьт к ОП, в то время как р.с.э. нормально реагируют на ОП в присутствии этих веществ.
Среди преимуществ р.с.э. отметим также их дешевизну по сравнению с платиновыми или золотыми электродами. Р.с.э. применяются с теми же приборами: потенциометрами, рН-метрами, самописцами, что и рН-метрические и ионометрические электроды, и в тех же системах датчиков. Они имеют те же формы и габариты, но по внутреннему устройству проще.