Статистические методы обработки
Страница № 3
Задание № 2
Установить функциональную зависимость между значениями x и y
по следующим результатам:
x |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
y |
18 |
20 |
22 |
27 |
32 |
45 |
59 |
63 |
Построим график зависимости между x и y
Согласно построенному графику, между значениями x и y устанавливается линейная зависимость, описываемая уравнением : у = а-аx.
Вычислим величину корреляции:
n
∑ (x-м) (y-м)
I=1 I x I y
R=
n 2 n
√∑ (x-м) ∑ (y-м)
I=1 I x I=1 I y
Страница № 4
Находим среднее арифметическое:
n
∑ x
I=1 I
М = _
n
М = 1+2+3+4+5+6+7+8 / 8 =4,5
x
М = 18+20+22+27+32+45+59+63 = 35,75
y 8
КОРРЕЛЯЦИЯ:
R= 0,14*0,025 = 1
√0,14*0,025
ВЫВОД: значение корреляции находится в пределах 1, если связь между величинами x и y сильна
Страница № 5
Задание № 2
x |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
y |
18 |
20 |
22 |
27 |
32 |
45 |
59 |
63 |
Корреляция R = 0,9201 y = 6,9405 x + 12,583
Ряд y- 1
Ряд -2 –линейный
ВЫВОД: значение корреляции положительное, связь между x и у прямая и сильная, но график зависимости в нашем случае полиномиальный, а не линейный обратный. Тогда нам нужно посмотреть при какой степени полинома, коэффициент корреляции будет близким к единице.
2
y = 0,8155 x + 1,2321x + 18,292 R = 0,9709
Ряд y- 1
Ряд -2 – полиномиальный
Страница № 6
3 2
y = -0,1591 x + 2,5216x -3,4643x + 20,212 R = 0,9817
Ряд y- 1
Ряд -2 – полиномиальный
4 3 2 2
y = -0,1297 x + 1,6572 x -5,3551x + 7,174x + 18,655 R = 0,9959
Ряд y- 1
Ряд -2 – полиномиальный
Страница № 7
5 4 3 2 2
y = -0,0394x + 0,5602x - 2,5479 x +4,9934x - 1,3095x + 19,05 R = 0,9991
Ряд y- 1
Ряд -2 – полиномиальный
ВЫВОД: При анализе аппроксимации значение коэффициента корреляции
2
Близкое к единице (R = 0,9991) показало в полиноме 5 степени.