Стандартизация измерения рН в неводных средах. Методы определения рН стандартных буферных растворов
Рефераты >> Химия >> Стандартизация измерения рН в неводных средах. Методы определения рН стандартных буферных растворов

В воде шкала рН=14; следовательно, нужно иметь семь индикатором для оценки кислотности.

Рассмотрим, насколько метод Гаммета пригоден для определения кислотности в пределах одного неводного растворителя.

Нельзя принимать, как это делает Гамметт, что в неводных растворах соотношение между константами индикаторов остается таким же, как и в воде. Как известно, растворитель оказывает дифференцирующее действие. Оно сводится к тому, что относительная сила кислот или оснований изменяется при переходе от одного растворителя к другому.

Разность в pК двух индикаторов основания В1 и В2 определится выра­жением:

pKA1-pKA2=-lg (2.4.10)

Введем концентрационные активности а* и коэффициенты активности тогда получим:

pKA1-pKA2=-lg (2.4.11)

Из уравнения (26) следует, что разность рK определяется не только соотношением активностей а*, но и соотношением коэффициентов актив­ности . Нет никаких оснований утверждать, что

(2.4.12)

и, следовательно, соотношение рКА не остается неизменным.

Это обстоятельство затрудняет использование метода Гамметта и в пре­делах одного растворителя. Необходима экспериментальная проверка pK индикаторов в каждом растворителе.

Есть и третий недостаток метода Гамметта, заключающийся в том, что иногда окраска индикатора изменяется не в связи с изменением соотношения между разными формами индикаторов ВН+ и В, а в связи с тем, что окраска одной из форм индикатора изменяется под влиянием растворителя. Однако главный недостаток метода Гамметта состоит в том, что влияние раствори­телей па заряженную и незаряженную формы индикатора не одинаково, в связи с чем Н0 не передает истинной кислотности неводных растворов.

Для оценки кислотности кроме функций Н0 и Н(-) предложены функция Н(+), основанная на зависимости положения равно­весия реакции ВН2+ = В+ + Н+ от кислотности, а также функция кислот­ности I0 , основанная на зависимости положения равновесия реакции ROH + H+ =R+ + H2O (R+ - ион карбония, ROH-арилкарбинол) от кис­лотности.

Каждая функция кислотности определяется значением соответствующих величин рК и отношением концентраций кислотной и основной форм инди­катора:

H0=pKBH++lg(cB/cBH+) H(-)=pKBH+lg(cB-/cBH)

I0=pKR++lg(cROH/cR+) H(+)=pKBH2++lg(cB+/cBH2+)

Соотношение между этими функциями кислотности и величиной истинной единой кислотности рА = -lg aH+ определяется следующими выражениями:

из которых следует, что они не совпадают между собой и что ни один из них не передает истинной кислотности.

2.5Метод нормального потенциала Плескова

Исследуя потенциалы щелочных металлов — лития, натрия, калия , рубидия, цезия, - Плесков установил, что э. д. с. цепи Rb|Rb+||Cs+|Cs оказывается неизменной во многих растворителях. На основании этого Плесков высказал предположение о том, что потенциал цезиевого или рубидиевого электродов следует считать неизменным в различных растворителях, т, е. считать, что э. д. с. Pt(H2)|H+||Cs+|Сs при переходе от одного растворителя к другому изменяется не за счет цезиевого электрода, а только за счет водородного электрода.

Однако неизменность разности потенциалов рубидия и цезия не означает, что каждый из этих потенциалов не изменяется при переходе от растворителя к растворителю - они изменяются, но в одинаковой степени.

Этот вывод был сделан на том основании , что изменение потенциала цепи Hg(Cs) | CsCl | AgCl, Ag при переходе от воды к спирту близко к изменению потенциала цепи Pt(H2)|HCl|AgCl, Ag. В этих цепях анионы одинаковы; следовательно, изменения потенциалов водородного и цезиевого электродов (во всяком случае при переходе от воды к спиртам) близки между собой. Поэтому не было оснований предполагать,, что изменение потенциала цепи Pt(H2)|H+|Сs+| Cs во всех растворителях обязано только водородному электроду; изменение потенциала обязано и водородному и цезиевому электродам. Это говорит о том, что в общем нельзя основывать оценку кислотности в неводных растворах на предположении Плескова.

Предположение Плескова оправдывается но отношению к растворителям с высокой диэлектрической проницаемостью и резко отличной от воды основностью (аммиак и муравьиная кислота), однако нельзя распространить этот результат на другие растворители без эксперименталь­ной проверки.

Строго, единая кислотность, которую мы обозначаем рА, отнесенная к воде в качестве единого стандартного состояния, определяется величиной отрицательного логарифма активности иона МН+:

(2.5.1)

где абсолютная активность иона МН+ ,отнесенная к активности протона в разбавленном водном растворе в качестве единого стандартного состояния.

Такая оценка кислотности является термодинамически строго обосно­ванной. Единая активность ионов лиония, отнесенная к воде в качестве стандартного состояния, может быть выражена так:

(2.5.2)

Подставляя эту величину в уравнение (2.5.1), получим:

(2.5.3)

в котором активность а* отнесена к бесконечно разбавленному раствору ионов в неводной среде, а коэффициент отнесен к воде в качестве стан­дартного состояния.

Величина —lg а*МН+ называется рНр. Она может быть измерена для любого неводного раствора против стандарта в том же самом неводном рас­творе. В определении этой величины затруднений нет.

Следовательно

pA = pHр (2.5.4)

Это однозначное определение величины рА.

2.6. Применение средних коэффициентов активности ионов для оценки единой шкалы кислотности

Для оценки единой шкалы кислотности можно воспользоваться сред­ними коэффициентами активности ионов сильной соляной кислоты.

Было установлено, что они могут быть определены только для суммы электролитов в целом. Эти величины хорошо известны для ионов ряда сильных кислот, особенно для HCl во многих растворителях. Например, для этилового спирта 2lg. Однако какая часть величины 5,02 составляет lg и какая часть lgмы не знаем. В связи с этим было предложено поступать так: принять, что средний коэффициент активности ионов кислоты равен коэффи­циенту активности ионов лиония, т. е. предположить, что:


Страница: