Совершенствование технологии получения технического ПАН жгутика
Из рассмотренных видов осадительных ванн наиболее перспективны мягкие ванны с содержанием осадителя в узком диапазоне концентраций. Применение мягких ванн при формовании ПАН волокон приводит к образованию мелкофибриллярной структуры волокна и повышению физико-механических показателей УВ.
Повышение показателей качества УВ за счет более высокой ориентационной вытяжки на стадии получения ПАН волокон и их термоокислительной обработки наиболее эффективно и используется с момента появления производства УВ. Возможности этого способа в значительной мере уже исчерпаны. Попытки дальнейшего повышения ориентационной вытяжки часто заканчиваются неудачей. Это связано с неравномерностью филаментов по их деформационной способности. Часть волокон, 5-15%, не выдерживает заданной вытяжки и, обрываясь, снижает качество всей углеродной нити. Это явление становится особенно недопустимым при осуществлении вытяжки в виде тканой ленты, когда даже при больших степенях вытягивания разрыв филаментов в ленте остается незамеченным и конечное УВ обладает низкой прочностью в пластике.
Структура полимерного каркаса в ПАН волокне такова, что даже при 12-14-кратной вытяжке угол разориентации не уменьшается ниже 10-12°. Дальнейшее повышение взаимного упорядочения макромолекул может быть достигнуто путем перевода материала в мезофазное (жидкокристаллическое) состояние, при котором реализуется эффект самопроизвольного упорядочения материала [17].
Заключение
Анализ литературных свидетельствует о том, что:
- мокрое формование ПАН волокон из диметилформамида обеспечивает их высокие эксплуатационные характеристики;
- диметилформамид является более технологичным и менее токсичным растворителем по сравнению с водным раствором роданида натрия. При его использовании не требуется изменения в технологии получения ПАН волокон;
- при диметилформамидном способе процесс регенерации отработанных ванн достаточно и заключается в испарении избытка воды с последующей перегонкой растворителя. В этом случае примеси остаются в кубовом остатке. Для уменьшения гидролиза диметилформамида его перегонку проводят под вакуумом при 90-100°С.
Повышение качества УВ, в частности, их прочности и модуля упругости, достигается следующими методами:
- снижением пористости исходных ПАН волокон путем выбора растворителя, оптимальных условий формования, пластификационной вытяжки, отделки и сушки; уменьшением неравномерности диаметра волокон за счет подавления деформационного резонанса во время формования выбором условий образования струй и их отверждения;
- уменьшением размеров фибрилл и кристаллитов путем уменьшения градиента концентраций осадителя и растворителя в зоне осаждения (формование в мягкие ванны).
Список использованной литературы
1. Термо- и жаростойкие волокна / под ред. А.А. Конкина. - М.: Химия, 1978. - 424 с.
2. Азенштейн Э.М. Цены на нефтехимическое сырье и синтетические волокна и нити на его основе во II полугодии 2005 г. / Э.М. Азенштейн // Химические волокна 2006. - №2. – С.67-79.
3. Азенштейн Э.М. Цены на нефтехимическое сырье и синтетические волокна и нити на его основе в I полугодии 2006г. / Э.М. Азенштейн // Химические волокна 2006. - №6. – С.68-77.
4. Роговин З.А. Основы химии и технологии химических волокон / З.А.Роговин, Т.2. – М.: Химия, 1974. – 344 с.
5. Устинова Т.П. ПАН волокна: технология, свойства, области применения / Т.П.Устинова, Н.Л.Зайцева: Курс лекций. – Саратов: Сарат. гос. техн. ун-т, 2002. – 40 с.
6. Карбоцепные синтетические волокна / Под ред. К.Е.Перепелкина. - М.: Химия, 1973. - 589 с.
7. Алиева Э.Р. Определение коэффициента диффузии серной кислоты в свежесформованный полиакрилонитрильный жгут / Э.Р. Алиева, Ю.П.Кожевников, А.Т.Серков // Химические волокна. – 1990. - № :. – С.23-24.
8. Иолева М.М. О морфологии структуры полиакрилонитрильных волокон/ М.М. Иолева, С.И. Бандурян, Л.А. Златоустова // Химические волокна. - 1999. - №2. - С.41-43.
9. Смирнов В.А. Устойчивость процесса формования струи раствора полиакрилонитрила в диметилформамиде / В.А. Смирнов, Н.К. Жиганов, В.Н. Янков, М.С. Межиров // Химические волокна. - 1988. - №4. - С.16-18.
10. Повышение устойчивости формования акрильных волокон / А.Т. Серков, Л.А. Златоустова, Г.А. Будницкий, М.Б. Радишевский // Химические волокна. – 1999. - №5. - С.16-19.
11. О структуре акриловых волокон / А.Т. Калашник, О.Н. Паничкина, А.Т. Серков, Г.А. Будницкий // Химические волокна. – 2002. - №6. -18-23.
12. Совершенствование технологии получения высокопрочных и высокомодульных углеродных волокон/ М.Б. Радишевскип, А.Т. Серков, Г.А. Будницкий, В.А. Медведев, Л.А. Златоустова // Химические волокна. – 2005. - №5. – С.12-15.
13. Процесс изготовления углеродных волокон на основе коммерческих полиакрилонитрильных волокон мокрого формования / R. Eslami Farsani, A. Shokuhfar, A. Sedghi // Химические волокна. – 2006. - №5. – 31-33.
14. О микропористости полиакрилонитрильного волокна / Л.А. Златоустова, В.Н. Смирнов, В.А. Медведев, А.Т. Серков // Химические волокна. – 2002. - №3. – С.39-42.
15. Термо- и жаростойкие волокна / Под ред. А.А. Конкина. М.: Химия, 1978. 424 с.
16. Радишевский М.Б. Механизм коагуляции при формовании волокон по мокрому способу / М.Б. Радишевский, А.Т.Серков // Химические волокна. – 2005 . - №4. – С.26-31.
17. Серков А.Т. Углеродные волокна в Мытищах // Химические волокна. – 2001. - №2. – С.41-45.