Смолы природные и синтетические
Рефераты >> Химия >> Смолы природные и синтетические

Электрические свойства янтаря следующие:

р=10 19 Ом/см; е =2,8;tg б =0,001.

Янтарь нужно выделить как самый лучший природный диэлектрик. Его до сих пор используют в электрометрах и электретах. Спиртовой раствор янтаря — хороший флюс, остатки которого действительно не нужно смывать, если платы потом не лакируют. Его остатки — диэлектрик. Для изготовления подобных флюсов вполне можно применять «несортовой », так называемый технический янтарь. Нерастворимые в спирте примеси легко отделяются методом центрифугирования с дальнейшей фильтрацией. В дополнение к микропористым фильтрам идут также ионообменные смолы, которые осуществляют еще более тонкую очистку. В производстве электроизоляционных лаков копалы ранее очень широко применялись для изготовления высококачественных масляно-копаловых лаков. В связи с развитием промышленности синтетических смол они потеряли свое значение, и применение их очень ограничено.

2. Твердые органические диэлектрики.

К органическим диэлектрикам относятся материалы, в составекоторых находится углерод. В качестве добываемые преимуще­ственно в Африке и Юго-Восточной Азии. Раньше благодаря растворимости в растительных маслах они довольно широко применялись в производстве электроизоляционных лаков, сейчас практически вытеснены синтетическими полимерами. Я Янтарь - также ископаемая смола, добываемая в России, обладающая очень высокими электрическими параметрами: удельное сопротивление органических диэлектриков в промышленности при­меняют как природные, так и синтетические полимеры, которые получают методом химического синтеза. Часто их называют смо­лами.Открытие синтетических полимеров сыграло большую роль в развитии многих отраслей, в том числе электротехники и радио­электроники.Большинство органических диэлектриков представляют собой высокомолекулярные вещества, которые содержат очень большое число атомов или простейших молекул. Основу многих высокомо­лекулярных диэлектриков составляют полимерные соединения, которые получают из мономеров (низкомолекулярных соединений) в процессе реакций полимеризации или поликонденсации.

Полимеризация - это процесс соединения большого числа моно­меров с образованием нового высокомолекулярного вещества (по­лимера) без выделения побочных продуктов реакции.

Поликонденсация - это процесс соединения разнородных моно­меров с образованием полимера и выделением побочного продук­та реакции. Свойства полимеров определяются химическим составом, вза­имным расположением атомов и строением макромолекул. По стро­ению макромолекулы полимеров делятся на линейные (нитевидные) и пространственные (сетчатые). Линейные полимеры представляют собой сочетание звеньев одной определенной структуры. Сочетание двух или трех химичес­ки различных звеньев образуют полимеры, которые называют со­вмещенными или сополимерами. Линейные полимеры относят к термопластичным материалам. Они обладают следующими свойствами: температура размягчения 50 .120°С, сравнительно высокий температурный коэффициент объемного расширения ТКР, невысокая теплостойкость, легко де­формируются при нагревании и затвердевают при охлаждении, име­ют аморфную структуру и при нагревании плавно переходят из твер­дого состояния в жидкое или текучее.

Электрические свойства линейных полимеров зависят от рас­положения атомов или определенной группы атомов в цепи мак­ромолекулы. Линейные полимеры с несимметричным строением атомов являются полярными и имеют большие диэлектрические потери. Линейные полимеры с симметричным строением мономе­ров являются неполярными и имеют малые диэлектрические по­тери. Большинство материалов на основе линейных полимеров имеют аморфную структуру и при нагревании плавно переходят из твердого состояния в жидкое или текучее. Некоторые полиме­ры склонны к образованию кристаллов, т. е. способны кристалли­зоваться. В пространственных полимерах макромолекулы связаны поперечными химическими связями. Пространственные полимеры относятся к термореактивным ма­териалам. Они обладают следующими свойствами: большая жест­кость, чем у линейных полимеров; при нагревании не размягчают­ся; не гибкие; не способны образовывать пленки и волокна; не ра­створяются в растворителях. По тепловым свойствам полимеры подразделяют на термоплас­тичные и термореактивные. Термопластичные материалы (термопласты) характеризу­ются тем, что нагревание до температуры, соответствующей плас­тическому состоянию, не вызывает необратимых изменений их свойств . Они тверды при достаточно низких температурах, но при нагревании становятся пластичными и легко деформируются. В настоящее время термопластичные материалы составляют при­мерно 75% всех потребляемых мировой электротехнической про­мышленностью полимерных материалов. В термореактивных (термоотверждающихся) материалах при достаточной выдержке при высокой температуре происходят необратимые процессы, в результате которых они теряют способ­ность плавится и растворяться, становясь твердыми и механически прочными.

3. Полимеризационные синтетические полимеры

Полимеризационные синтетические полимеры получают в про­цессе полимеризации под действием теплоты, давления, ультрафи­олетовых лучей, а также инициаторов и катализаторов. При поли­меризации двойные и тройные связи мономеров разрываются и молекулы, соединяясь между собой, еще больше удлиняются. Наибольшее распространение получили блочный, эмульсион­ный, лаковый и газовый способы полимеризации.

Блочный способ полимеризации состоит в том, что предва­рительно очищенный от примесей жидкий мономер смешивают с катализатором, заливают в нагретую до определенной температу­ры форму и выдерживают при этой температуре до полного окон­чания процесса полимеризации. В результате получают твердые бло­ки материала, которые поступают в дальнейшую переработку. Таким способом получают полистирол, полиметилметакрилат (оргстекло).

Эмульсионный способ полимеризации представляет собой процесс, при котором исходный жидкий мономер с помощью эмульгатора­ (Эмульгатор – это вещество, способствующее образованию эмульсий; эмульгаторами являются мыла, желатины и многие синтетические вещества.) превращают и мельчайшие капельки, взвешенные и другой жидкости, которая не растворяет этот мономер (вода, бензин и др.). В полученную эмульсию (Эмульсия – это жидкость, в которой находятся во взвешенном состоянии микроскопические капельки другой жидкости.) вводят инициатор (Инициатор – это зачинатель цепной химической или ядерной реакции в результате внешнего воздействия на систему.) и массу нагревают до температуры, при которой начинается химическая реакция. В про­цессе полимеризации эмульсию постоянно перемешивают. В резуль­тате получают порошкообразный полимер, незначительно загряз­ненный эмульгатором, что снижает его диэлектрические свойства. Затем порошок подвергают грануляции. Таким способом получают поливинилхлорид, нитрон. Лаковый способ полимеризации осуществляется непосред­ственно в мономере, который растворяется в определенном раство­рителе. Таким способом получают поливинилацетат. При газовом способе полимеризация осуществляется в газо­вой фазе в присутствии катализатора при температуре примерно 200°С и высоком давлении. Этот способ применяют в том случае, когда мономеры не полимеризуются ни по одному из перечислен­ных способов. Таким способом получают полиэтилен высокого давления. К полимеризационным синтетическим полимерам относятся полимерные углеводороды, фторорганические полимеры, кремний­органические полимеры (полисилоксаны). Полимерные углеводороды. К ним относят полистирол, полипро­пилен, полиэтилен, поливинилхлорид (ПВХ), винипласт, полиме­тилметакрилат (оргстекло) и др.


Страница: