Синтезы органических соединений на основе оксида углерода
Помимо синтезов органических соединений из СО и Н2 – углеводороды, олефины, в том числе изобутилен с высокими показателями (селективность > 90%), спирты, в том числе изобутанол с выходом ~70%, метанол и др. – оксид углерода взаимодействует с различными органическими молекулами без и с участием Н2.
Оксосинтез
Первый важный промышленный синтез альдегидов и спиртов по реакции СО и Н2 с олефинами был открыт в 1939 г О. Рёленом. Процесс получил название “оксосинтез” (oxo-process), а реакцию синтеза альдегидов называют реакцией гидроформилирования, например:
(1)
В реакции используют этилен, пропилен, изобутилен, стирол и высшие a-олефины (для получения высших спиртов нормального строения). Процесс проводят в органических растворителях или в жидких олефинах.
Первым катализатором процесса были комплексы кобальта, а в качестве исходного комплекса использовали кластер Co2(CO)8. Стадии процесса – типичные реакции для металлокомплексного катализа.
Основные формы катализатора в растворе – HCo(CO)4 и C2H5COCo(CO)4.
Процесс требует высокой температуры ~ 150оС и, следовательно, высокого давления (> 30 атм) для предотвращения распада термически неустойчивых комплексов Со. Критическое давление Р > 10 атм при 120оС. Строгая кинетическая модель этого сложного процесса пока не получена. Отмечено сильное торможение оксидом углерода и важная роль координационно-ненасыщенных комплексов HCo(CO)3 и C2H5COCo(CO)3. Экспериментально полученное кинетическое уравнение (2)
(2)
превращается в уравнение (3), описывающее процесс в узком интервале РСО
, (3)
где n ³ 2.
В ходе реакции имеет место частичное гидрирование альдегидов до спиртов. Важным показателем процесса является соотношение альдегидов нормального (n) и изостроения (i). С целью повысить соотношение n/i и смягчить условия процесса исследовали другие каталитические системы (см. таблицу).
Таблица. Катализаторы оксосинтеза.
Условия, показатели |
HCo(CO)4 |
HCo(CO)3L L – PBu3 |
HRh(CO)L3 L – PPh3 |
T, oC |
12 –160 (опт. 150) |
160–200 |
80–120 |
Р, атм |
200–350 |
50–100 |
15–50 |
Альдегиды, % |
87 |
– |
96 |
Спирты, % |
10 |
80 |
– |
n/i |
80:20 |
88:12 |
92:8 |
Алканы, % |
1 |
15 |
2 |
Наиболее мягкие условия проведения процесса установлены для комплексов Rh(I), которые более, чем в 104 раз активнее карбонильных комплексов Со. В случае комплексов Rh(I) кинетическое уравнение (4) заметно отличается от уравнения (3)
(4)
Нулевой порядок по олефину объясняют лимитирующей стадией
(5)
при условии, что весь [Rh]S практически находится в форме ацильного комплекса родия(I).
В случае малоактивных олефинов лимитирующая стадия – взаимодействие HRh~ с олефином, в этом случае гидридные комплексы родия склонны взаимодействовать друг с другом с образованием кластеров Rh(0), часть которых образуется необратимо и приводит к дезактивации катализатора. На примере HRh(CO)4 схема превращений выглядит следующим образом:
Кластер Rh4(CO)12 при взаимодействии со смесью СО и Н2 превращается в активный HRh(CO)4, а кластер Rh6(CO)16 – уже нет. Предполагают, что свободный HRh(CO)4 принимает участие в стадиях (4) и (5). Таким образом, более активный олефин, ускоряя процесс перехода HRh~ в RCORh, уменьшает концентрацию HRh~ и тем самым “защищает” катализатор от дезактивации. Аналогичная картина имеет место и для фосфиновых комплексов родия.
Несмотря на явно более эффективный и селективный процесс в случае родиевых катализаторов, высокая стоимость родия делает кобальтовые и родиевые системы близкими по экономическим показателям. В курсе “Прикладной катализ” будут рассмотрены технологические варианты декобальтизации, т.е. процессов отделения катализатора от продуктов реакции и методы выделения родиевых катализаторов.
Различные реакции с участием СО
В реакциях СО с олефинами и алкинами участвуют также молекулы других реагентов – Н2О, ROH, RNH2 и др. Эти процессы были открыты В. Реппе в начале 40-х гг XX века и протекают в растворах комплексов Ni(0, II) и Pd(0, II). Например,
(6)
(7)
(8)
В случае олефинов активными являются гидридные комплексы палладия HPdClL, и схема механизма напоминает схему оксосинтеза
(9)
Механизм гидрокарбалкоксилирования ацетилена в растворах комплексов цис-PdBr2[P(OPh)3]2 отличается от схемы (9) – в этой системе активными комплексами являются комплексы Pd(II) (упрощенная схема):
Кинетическая модель процесса (10):
(10)