Синтез нитробензойной кислоты
Рефераты >> Химия >> Синтез нитробензойной кислоты

Бензол в отсутствие катализатора не реагирует с бромом и хлором, демонстрируя тем самым устойчивость трех двойных связей в его молекуле к действию электрофильных агентов. В то же время наличие последних подтверждается взаимодейст­вием бензола с хлором при облучении, приводящим к образованию гексахлорциклогексана (гексахлоран):

Интересная реакция с участием двойных связей наблюдается при облучении бензола в жидкой фазе светом с дли­ной волны 253,7 нм. В этих условиях молекула бензола перестраивается, превращаясь в так называемые валентные изомеры.

Таким образом, были получены три структуры из тех, которые предлагались ранее для бензола. Оказалось, что они резко отличаются по свойствам от последнего: легко окисляются (в том числе водным раствором перманганата), бурно реагируют с бромом.

В молекуле бензола сопряженные двойные связи в отличие от таковых в диенах и других сопряженных системах устойчивы к действию водорода в момент выделения. Однако в присутствии катализаторов гид­рирования (платина, никель) бензол превра­щается в циклогексан:

Эта реакция не только подтверждает строение бензола (на­личие циклогексанового скелета и трех тг-связей), ее применяют также для оценки энергии его молекулы.

Ранее на примере алкенов и алкадиенов было показано, как для такой цели используют определение теплот гидрирования.

Измерение теплоты гидрирования бензола показало, что она составляет 206 кДж/моль, т. е. су­щественно меньше, чем утроенное значение теплоты гидриро­вания циклогексена (119 кДж/моль х 3 = 357 кДж/моль). Отсю­да следует, что молекула бензола обладает меньшей энергией, чем можно было ожидать, от циклогексатриена. Разность указан­ных значений (357-206 кДж/моль) составляет ~ 150 кДж/моль и называется энергией стабилизации или резонанса.

Сходная картина наблюдается при сравнении значений теплот сгорания бензола, вычисленных по аддитивной схеме и найден­ных экспериментально. Соответствующая разность оказалась равной 159 кДж/моль. Таким образом, определение энергии стабилизации (резонанса) молекулы бензола двумя независимыми путями дало практически совпадающие результаты.

Замещенные одноосновные ароматические кислоты

Нитробензойные кислоты

При нитровании бензойной кислоты получается 78%-мета-, 20% орто- и 2% пара-нитробензойных кислот. Два последних изомера без примесей других изомеров получают окис­лением орто- и пара- нитротолуолов.

Нитробензойные кислоты обладают более сильными кислотными свойствами, чем бен­зойная кислота (К = 6,6·10-5): о-изомер — в 100 раз, м-изомер — в 4,7 раза и п-изомер — в 5,6 раза. Аналогичная закономерность наблюдается и в случае галогенозамещенных кислот.

Константы ионизации замещенных бензойных кислот

Заместитель

Положение

орто-

мета-

пара-

CH3

1.2·10-4

5.3·10-5

4.2·10-5

OH

1.1·10-3

8.3·10-5

3.3·10-5

OCH3

8.0·10-5

8.2·10-5

3.4·10-5

Br

1.4·10-3

1.5·10-4

1.0·10-4

Cl

1.2·10-3

1.5·10-4

1.0·10-4

NO2

6.7·10-3

3.1·10-4

3.7·10-4

Увеличение силы кислот с электроноакцепторными заместителями в п- и м-положении объясняется увеличением подвижности кислотного протона благодаря ослаблению связи О—Н (уменьшение электронной плотности)

Уравнение Гаммета было впервые использовано при изучении диссоциации м- и п-замещенных бензойных кислот. Для этой реакционной серии значение р было приняторавным 1 и, следовательно, уравнение Гаммета имело вид lgК/К0= ρσгде К — константа скорости или константа равновесия для замещенного соединения; К0 — аналогичная константа для незамещенного соединения; σ — константа, характеризу­ющая полярное влияние заместителя; ρ — константа, определяющая степень чувствитель­ности реакционного центра к полярным эффектам. Константа σ зависит только от природы заместителя, а константа ρ — от характера реакции.

Соединения с различными заместителями, но с одним и тем же реакционным центром об­разуют реакционную серию.

σ-Константы некоторых заместителей приведены в таблице:

Заместитель

σ

Заместитель

σ

Мета-

Пара-

Мета-

Пара-

-H

0

0

-I

0.352

0.18

-CH3

-0.069

-0.17

-OH

0.127

-0.37

-C2H5

-0.07

-0.151

-O

-0.708

-0.519

-C(CH3)3

-0.1

-0.197

-OCH3

0.115

-0.268

-CF3

0.43

0.54

-NH2

-0.16

-0.66

-COOH

0.355

0.265

-NHCOCH3

0.21

0

-COO-

-0.1

0

-N(CH3)2

-0.211

-0.83

-COOC2H5

0.37

0.45

-N(CH3)3

0.88

0.82

-C0CH3

0.376

0.502

-NO2

0.71

0.778

-F

0.337

0.062

-SO2

0.05

0.09

-CI

0.373

0.227

-SO2NH2

0.46

0.57

-Br

0.391

0.232

     


Страница: