Синтез зтилового спирта, этилбензола и алкилирование фенолов
Побочные реакции:
1. на AlCl3 протекают реакции последовательного алкилирования, а т.к. алкилирование проводится под термодинамическим контролем, то среди диэтилбензолов будут преобладать мета- и пара-изомеры, а среди триэтилбензолов – 1,3,5-триэтилбензол.
2. деструкция этильной группы с образованием толуола;
3. олигомеризация этилена
4. смолообразование за счет конденсации ароматических соединений (диарилалканы).
Механизм – карбкатионный: протон уже имеется в виде σ-комплекса. Он передается молекуле олефина, образовавшийся карбокатион атакует ароматическое соединение, причем вся реакция протекает в слое каталитического комплекса, который обменивается своими лигандами с углеводородным слоем. Далее карбокатион атакует ароматическое ядро, образуются последовательно π-комплекс и карбокатион с последующей быстрой стадией отщепления протона.
Оптимальные условия: температура – 100-1100С (при этой температуре переалкилирование уже протекает достаточно быстро, но полициклических веществ, дезактивирующих катализатор еще мало); давление 0,1-0,2 МПа; соотношение бензол : этилен = (2-3) : 1моль/моль.
Технологические особенности процесса:
1. необходимость использовать избыток бензола по отношению к олефину – рецикл бензола;
2. реакция экзотермичная – необходимо предусмотреть съем тепла;
3. катализ осуществляется катализаторным комплексом на основе AlCl3 - его готовят отдельно;
4. реакция идет в слое катализаторного комплекса – необходимо активное перемешивание;
5. необходимость осушки бензола и, при необходимости, олефиновой фракции, т.к. наличие влаги приводит к дезактивации катализатора – осушка бензола, возможность отгонять непрореагировавший бензол с водой и возвращать его в рецикл;
6. на AlCl3 протекает обратимая реакции переалкилирования;
7. необходимость разлагать катализаторный комплекс – промывки, сточные воды;
8. абгазы содержат HCl – очистка абгазов.
Стадии, из которых состоит процесс:
1. гетероазеотропная осушка бензола;
2. блок приготовления катализатора;
3. реакторный узел;
4. очистка отходящих газов от HCl;
5. отделение реакционной массы от катализаторного комплекса;
6. разложение катализаторного комплекса и очистка продуктов алкилирования от HCl;
7. разделение продуктов алкилирования;
8. блок переалкилирования (оформленный отдельно или в возврат ди- и триалкилбензолов на переалкилирование в основной реактор).
Варианты оформления реакторного блока:
1. реактор с мешалкой и рубашкой периодического действия;
2. изотермический реактор трубчатого типа;
3. каскад реакторов с мешалками и рубашками;
4. реактор колонного типа, работающий в автотермическом режиме (съем тепла осуществляется кипящим бензолом).
Продукты, получаемые алкилированием фенолов и их назначение. Существующие катализаторы и алкилирующие агенты. Катализатор и оптимальные условия получения 2,6-дитретбутилфенола, запишите основную и побочные реакции, механизм превращения. Технологические особенности процесса, из каких стадий он состоит. Выбор конструкции реактора.
Газофазным метилированием фенола метанолом над гетерогенным катализатором получают о-, м- и п-крезолы и изомерные ксиленолы.
Из моноалкилфенолов практический интерес представляет п-третбутилфенол, используемый в производстве лакокрасочных покрытий. Моноалкилфенолы с алкильной группой из 5-8 атомов углерода являются сильными бактерицидными средствами, а с 8-12 атомами С – ценными промежуточными продуктами для синтеза ПАВ.
2-Треталкил-, 2,4- и 2,6-дитреталкилфенолы являются промежуточными продуктами для синтеза стабилизаторов полимеров и масел против термооокислительной деструкции.
Катализаторы и алкилирующие агенты:
На AlCl3 образуется сложная смесь продуктов, содержащая соли PhOAlCl2, поэтому в промышленности AlCl3 для алкилирования фенолов не используют.
Чаще всего применяют протонные кислоты и металлоксидные катализаторы. Поэтому в качестве алкилирующих агентов используют только спирты и олефины.
В качестве катализаторов – протонных кислот – в промышленности чаще всего применяют серную кислоту. Она дешевле и доступнее других кислот, но и сильнее катализирует побочные реакции, приводя дополнительно к сульфированию фенола и сульфатированию олефина.
п-Толуолсульфокислота - CH3C6H4SO2OH - катализатор, не вызывающий побочных реакций сульфирования и более мягкий по действию. Имеет меньшую активность и большую стоимость, чем серная кислота.
Глобальный недостаток этих катализаторов – образование большого количества кислых сточных вод в результате отмывки р.м. от катализатора.
Гетерогенные катализаторы – катионообменные смолы (КУ-2, КУ-23), которые отделяются от реакционной массы простым фильтрованием. Реакция идет при 120-1400С, но медленнее, чем серной кислотой.
Оксид алюминия, алюмосиликаты – гетерогенные катализаторы кислого типа применяются только для газофазного процесса метилирования фенола метанолом.
Феноляты алюминия (PhO)3Al – катализаторы селективного орто-алкилирования фенолов. В этом случае даже при незанятом пара-положении алкильная группа направляется преимущественнон в орто-положение.
2,6-Дитретбутилфенол образуется в небольших количествах при алкилировании фенола изобутиленом в присутствии обычных кислотных катализаторов, но его трудно выделить из реакционной массы.
Основной промышленный способ получения – жидкофазное алкилирование фенола изобутиленом в присутствии фенолята алюминия (5-10 г на 1 кг фенола). Температура процесса 100-1100 С, т.к. при более высоких температурах становится все более заметным пара-алкилирование. Изобутилен берется в избытке.
Основная реакция:
Побочные: 2-, 4-третбутилфенолы; 2,4-дитретбутилфенол, 2,4,6-тритретбутилфенол.
Механизм – карбокатионный, фенолят алюминия как апротонная кислота образует с фенолом комплекс (феноксиалюминиевую кислоту), имеющий значительную кислотность. Олефин дает с протоном карбокатион, который не выходит в объем и при внутрикомплексной реакции атакует ближайшее к нему орто-положение фенола.
Технологические особенности:
необходимость использовать осушенный фенол, т.к. фенолят алюминия легко гидролизуется, теряя каталитическую активность;
экзотермичность реакции приготовления катализатора (нужно предусмотреть нагрев, а затем съем тепла);
экзотермичность самой реакции алкилирования (нужно предусмотреть съем тепла);
необходимость разложения и отделения катализатора;
побочные можно деалкилировать в исходные вещества и возвратить на реакцию.
Основные стадии процесса: осушка фенола (при необходимости), приготовление катализатора (обработка фенола металлическим алюминием при 150-1600С), алкилирование фенола изобутиленом, разрушение и отделение ката