Синергизм пищевых добавок
Последние три года в лаборатории ЗАО «Компания Милорд» было предпринято систематическое изучение явление синергизма пищевых полисахаридов. Результаты исследований легли в основу создания рецептур и технологий пищевых добавок - стабилизирующих комплексов на основе альгинатов, каррагинанов, пектинов, разлтчных камедей [5].
Из выше сказанного следует, что комплексы пищевых стабилизаторов/загустителей представляют собой сложные смеси полисахаридов, каждый из которых оказывает влияние на свойства итогового продукта. Очевидно, что при варьировании соотношения полисахаридов в смеси можно регулировать свойства композиции в целом. Именно этот факт позволил создать различные комплексы для различных нужд (соусов, заливных мясных и рыбных, желе и др.).
1.3 Факторы, влияющие на проявление синергизма
Показатели смесей гелеобразователей-полисахаридов, определяющие степень и природу синергизма, следующие:
1. Диспергируемость сухих порошков в воде и растворах;
2. рН систем;
3. Вязкость систем;
4. Вязкость систем после термообработки;
5. Органолептические показатели систем (косвенно);
6. Наличие синерезиса в системах;
7. Структурно-механические показатели систем;
8. Концентрации гелеобразователей и добавок (при их наличии).
В апреле 2010 года в Санкт-Петербурге прошла очередная, 7-ая по счету конференция, посвященная пищевым добавкам. Тематика данной конференции - "Синергизм пищевых добавок" - вызвала огромный интерес у участников. На данной конференции был в значительной степени обобщен и структурирован материал по синергизму пищевых систем, используемых в России; названы основные параметры, связанные с синергетическим взаимовлиянием пищевых добавок (8 ключевых названы выше) [4].
Исследования в области регулирования ряда параметров и анализ полученных экспериментальных данных в настоящее время активно ведутся как в нашей стране, так и за рубежом. К примеру, темой моей курсовой работы и частью диплома стало исследование синергизма на примере системы альгинат + пектин. В ходе изучения данной проблемы, неизбежно приходиться регулировать такие показатели, как концентрация полимера, наличие и концентрация добавок, температурный режим гелеобразования и др. Эти и другие факторы как раз и обуславливают явление синергизма.
2. Гидроколлоиды. Общие сведения
Гидроколлоиды представляют собой высокомолекулярные растворимые (или частично растворимые, набухающие) в воде органические вещества, широко распространенные в природе (а также искусственно синтезируемые) и различающиеся по происхождению, химическому составу, свойствам, области применения.
По происхождению гидроколлоиды можно разделить на 3 основные группы:
- гидроколлоиды, продуцируемые микроорганизмами;
- гидроколлоиды животного происхождения;
- гидроколлоиды растительного происхождения.
Представителями первой группы являются ксантановая (Е 415) и геллановая (Е 418) камеди, а также камеди веллана и рамзана.
Гидроколлоидом животного происхождения является желатин, получаемый путем термического гидролиза белка соединительной ткани коллагена.
К гидроколлоидам растительного происхождения относятся разнообразные продукты переработки растений и морских водорослей. Иногда водорослевые полисахариды выделяют в отдельную самостоятельную группу на основе специфики свойств и широкого разнообразия их источников - водорослей.
Гидроколлоиды, получаемые из наземного растительного сырья, можно, в свою очередь, разделить на 3 основные подгруппы:
- экстракты семян растений (галактоманнаны): камедь рожкового дерева / LBG (Е 410), гуаровая камедь (Е 412);
- экстракты собственно растений: гуммиарабик (Е 414), камедь трагаканта (Е 413), камедь карайи (Е 416);
- экстракты плодов растений: различные пектины и крахмалы.
К гидроколлоидам, получаемым в результате переработки морских водорослей, относятся альгинаты (Е 401, Е 402, Е 404), агар и агароид (Е 406), каррагенаны (Е 407) и другие. [7]
Представители различных групп гидроколлоидов нашли то или иное применение при производстве многих видов пищевых продуктов - кондитерских и хлебобулочных изделий, соков и напитков, молочных и мясных продуктов, кулинарных изделий и готовых блюд, продуктов специального, лечебного, профилактического и диетического питания.
К примеру, при производстве мясных продуктов наиболее широко используются крахмалы, желатин, каррагенан, а также некоторые виды камедей.
Согласно данным [1], камедями считают «продукты, выделяющиеся из надрезов и трещин растений или получаемые в результате их промышленной переработки; к камедям также относятся коммерческие препараты на основе полисахаридов, продуцируемых некоторыми видами микроорганизмов».
В химическом отношении камеди не однородны и относятся к гетерополисахаридам - гексозаны, пентазаны, полиурониды.
Камедь рожкового дерева, известная еще в Древнем Египте, получается при переработке семян растения Ceratonia siligua. Препарат гуаровой камеди извлекается из молотого эндосперма семян гуарового растения Cyamopsis tetragonolobus, культивируемого в Индии и Пакистане. Ксантановая камедь остается единственным полисахаридом, получаемым промышленным способом в широком масштабе путем микробного биосинтеза в аэробных условиях, ферментацией углеводов микроорганизмами Xanthomonas campetris. Ксантан широко применяется при производстве хлебобулочных и кондитерских изделий, мармеладов, джемов, желе, соусов, соков и напитков.
По способности растворяться в воде гидроколлоиды делятся на полностью растворимые, сильно набухающие и мало растворимые. Для многих гидроколлоидов растворение должно сопровождаться термостатированием или даже интенсивным нагреванием. В холодной воде набухание полисахаридов зачастую сопровождается образованием вязких коллоидных растворов. Высокая гидрофильность гидроколлоидов обусловлена их химическим строением - наличием боковых цепей и большого числа заряженных карбоксильных групп [3].
В пищевой промышленности полисахариды гидроколлоидов часто используются в качестве загустителей и стабилизаторов консистенции, для формирования вязкости и пластичности структуры готового продукта. Вязкость, термообратимость, структура, стойкость дисперсных растворов гидроколлоидов зависит от вида и концентрации полисахарида, температуры и времени застудневания, уровня рН среды, наличия и концентрации добавок. Для достижения необходимого уровня вязкости, концентрация большинства полисахаридов колеблется в пределах от 0,1 до 3 %. При использовании тонкодисперсных порошков (размер частиц около 100 мкм) геле- и студнеобразование протекает за 20-40 минут (для большинства ПС). Для гидратации и набухания более крупных частиц ряда полисахаридов (200-300 мкм) необходима выдержка порядка 1 часа. Следует иметь в виду, что скорость набухания частиц существенным образом зависит от интенсивности перемешивания и температуры, в которой находится при этом система [3,6].
При повторном нагреве-охлаждении системы гигроскопировавшего полисахарида может наблюдаться синерезис, что отрицательно сказывается на свойствах и качестве продукции. Тем не менее, для некоторых гидроколлоидов характерна термообратимость их студней (например, студни альгината натрия) [7].