Свойства краун-эфиров и фуллеренов
Другим, не менее перспективным и удивительным свойством фуллеренов является их реакции с водородом. Так, фуллерены способны формировать эндоэдральные комплексы с молекулярным водородом. Внутрь молекулы С70 возможно поместить до трех молекул H2 и сформировать комплекс (H2)@C70. Особо следует отметить способность холодных фуллеренов поглощать 17 атомов водорода на одну молекулу С60 при обработке водородом под давлением порядка 70 атм. Это открывает перспективы в будущем на переход на абсолютно экологически чистое и самое энергонасыщенное горючее - водород. Фуллерены являются в настоящее время самым наилучшим хранилищами для молекулярного водорода [25].
Фуллерены отличаются высокой химической инертностью по отношению к процессу мономолекулярного распада. Так, молекула С60 сохраняет свою термическую стабильность вплоть до 1700К[16], а константа скорости мономолекулярного распада в температурном диапазоне 1720-1970К измеряется в пределах 10-300 сек-1. Однако в присутствии кислорода, окисление этой формы углерода до СО и СО2 наблюдается уже при существенно более низких температурах - порядка 500К. Процесс, продолжающийся несколько часов, приводит к образованию аморфной структуры, в которой на одну молекулу С60 приходится двенадцать атомов кислорода, при этом молекула фуллерена практически полностью теряет свою форму. Дальнейшее повышение температуры до 700К приводит к интенсивному образованию СО и СО2 и приводит к окончательному разрушению упорядоченной структуры фуллеренов. При комнатной температуре окисление С60 происходит только при условии облучения фотонами с энергией в диапазоне 0.5-1200 эВ, что объясняется необходимостью образования ионов О2-, обладающих повышенной реакционноспособностью [16].
В результате хлорирования образуется соединение, содержащее либо 12, либо 24 атома хлора. Привлекательной особенностью хлорсодержащих фуллеренов является то, что атомы хлора могут замещаться на другие органические заместители. Среди таких “фуллероидов” можно отметить продукты присоединения радикалов водорода, фосфора, галогенов, металлов (и их оксидов), одинарных и двойных бензольных колец и их производных (Рис. 6.) [11].
Добавки фуллероидных наночастиц существенное влияют на адгезионную прочность эпоксидных полимерных материалов[8]: увеличивают прочность клеевого соединения на сдвиг клеевых составов в 1,5-2 раза; повышают прочности при отрыве для металлополимерных составов при повышенной температуре (1000С) в 2,5 - 5 раз. Возрастание прочностных характеристик и эластичности большинства модифицированных полимерных материалов связываются с влиянием этого класса наночастиц на надмолекулярную структуру полимеров и полимерных композитов [22].
Получаемые гетеро - и эндоэдральные фуллерены могут обладать весьма интересными и полезными свойствами. Например, если в фуллереновую клетку будет имплантирован и закреплен возбужденный атом водорода, то полученное вещество может стать абсолютным поглотителем электромагнитного излучения [21].
К этому стоит добавить, что чистый C60 обладает сравнимой или даже большей антиоксидантной активностью, чем у природного антиоксиданта витамина Е (a-токоферол), а также демонстрирует мощную гепатопротекторную активность, т.е. защищает печень от токсических повреждений[16].
Фуллериты (фуллерены в конденсированном состоянии) обладают высокой сорбционной способностью и как сорбенты по эффективности намного превышают широко используемый в настоящее время в качестве сорбента активированный уголь [16].
Необычными физико-химическими свойствами обладают также растворы фуллеренов в органических растворителях. Так, температурная зависимость растворимости С60 в толуоле, СS2, гексане имеет немонотонный характер, принимая максимальное значение при Т=280К. Растворы фуллеренов характеризуются нелинейными оптическими свойствами, что проявляется, в частности, в резком снижении прозрачности раствора при превышении интенсивности оптического излучения некоторого критического значения. Это открывает возможность использования фуллеренов в качестве основы для нелинейных оптических затворов, применяемых для защиты оптических устройств от интенсивного оптического облучения [8].
1.2.4 Получение фуллеренов
Наиболее эффективный способ получения фуллеренов основан на термическом разложении графита[22]. Используется как электролитический нагрев графитового электрода, так и лазерное облучение поверхности графита. На рис.5. показана схема установки для получения фуллеренов, которую использовал В. Кретчмер. Распыление графита осуществляется при пропускании через электроды тока с частотой 60 Гц , величина тока от 100 до 200 А, напряжение 10-20 В. Регулируя натяжение пружины, можно добиться, чтобы основная часть подводимой мощности выделялась в дуге, а не в графитовом стержне. Камера заполняется гелием, давление 100 Тор. Скорость испарения графита в этой установке может достигать 10г/В. При этом поверхность медного кожуха, охлаждаемого водой, покрывается продуктом испарения графита, т.е. графитовой сажей. Если получаемый порошок соскоблить и выдержать в течение нескольких часов в кипящем толуоле, то получается темно-бурая жидкость. При выпаривании ее во вращающемся испарителе получается мелкодисперсный порошок, вес его составляет не более 10% от веса исходной графитовой сажи, в нем содержится до 10% фуллеренов С60 (90%) и С70 (10%).Описанный дуговой метод получения фуллеренов получил название «фуллереновая дуга»[12].
В описанном способе получения фуллеренов гелий играет роль буферного газа. Атомы гелия наиболее эффективно по сравнению с другими атомами «тушат» колебательные движения возбужденных углеродных фрагментов, препятствующих их объединению в стабильные структуры. Кроме того, атомы гелия уносят энергию, выделяющуюся при объединении углеродных фрагментов. Опыт показывает, что оптимальное давление гелия находится в диапазоне 100 Тор. При более высоких давлениях агрегация фрагментов углерода затруднена[8].
Рис.5. Схема установки для получения фуллеренов.
1 – графитовые электроды; 2 – охлаждаемая медная шина; 3 – медный кожух, 4 – пружины.
Изменение параметров процесса и конструкции установки ведет к изменению эффективности процесса и состава продукта. Качество продукта подтверждается как масс-спектрометрическими измерениями, так и другими методами (ядерный магнитный резонанс, электронный парамагнитный резонанс, ИК-спектроскопия и др.) [8].
1.2.5 Применение фуллеренов
Фуллерены обладают рядом важных характеристик: химической стойкостью, высокой прочностью, жесткостью, ударной вязкостью, теплопроводностью и электропроводностью. В зависимости от тонких особенностей молекулярной симметрии фуллерены могут быть диэлектриками, полупроводниками, обладать металлической проводимостью и высокотемпературной сверхпроводимостью. Эти свойства в сочетании с наномасштабной геометрией делают их почти идеальными ‑ возможно даже уникальными ‑ материалами для изготовления электрических проводов, сверхпроводящих соединений или целых устройств, которые с полным основанием можно назвать изделиями молекулярной электроники. Химической сборке элементов различных схем благоприятствуют свойства фуллерена, который может образовывать ионы от +6 до ‑6 и в различных матрицах ‑ связи с донорами, акцепторами, свободными радикалами и ионами. Фуллерены могут также использоваться при создании средств молекулярной оптоэлектроники для фемтосекундной оптоволоконной передачи информации. Полимеризация фуллеренов при электроннолучевом или ионизирующем воздействии дает возможность получать резистры нового поколения[8].