Различные стратегии построения кинетических моделей сложных реакций
Химическая кинетика – наука о скоростях химических реакций, о динамическом поведении реакционной системы на ее пути к химическому равновесию. Эта область физической химии тесно связана с учением о механизмах химических реакций, поскольку химическая кинетика – один из методов изучения механизмов, а механизм реакции, как теперь стало ясно, есть основа построения адекватной кинетической модели.
Закончился XX век – столетие триумфального развития химической кинетики, включающего как микроуровень элементарного акта, так и макроуровень многостадийных процессов, отличающихся феноменальной сложностью механизмов. Основы химической кинетики как науки были заложены в начале века работами нобелевских лауреатов Я.Вант-Гоффа (1901 г), С.Аррениуса (1903 г), В.Оствальда (1909 г), а также М.Боденштейна. Различные аспекты теории элементарного акта были развиты Г.Эйрингом, М.Поляни, В.Г.Левичем и Р.Р.Догонадзе, лауреатами нобелевской премии К.Фукуи и Р.Хоффманом (1981 г), Г.Таубе (1983 г), Р.Маркусом (1992 г) и многими другими исследователями. Теория цепных реакций создана работами М.Боденштейна, Й.Христиансена и нобелевских лауреатов Н.Н.Семенова и С.Н.Хиншельвуда (1956 г), их учеников и последователей.
Нобелевскими премиями были отмечены методы и результаты исследований быстрых элементарных реакций (М.Эйген, Дж.Портер, Р.Норриш, 1967 г), а также разработка методов исследования динамики элементарных актов газофазных реакций (Д.Хершбах, Я.Ли, Дж.Поляни, 1986 г).
Выдающиеся результаты были получены в области кинетики гомогенных и гетерогенных каталитических реакций. Отметим лишь теорию
кинетики гетерогенных реакций на неоднородных поверхностях (М.И.Темкин и С.З.Рогинский), теорию кинетики стационарных реакций Хориути-Темкина, открытие катализа комплексами палладия окислительных превращений олефинов (И.И.Моисеев, М.Н.Варгафтик, Я.К.Сыркин, Ю.Смидт и др.) и создание И.И.Моисеевым теории этих процессов на основе детальных кинетических исследований (премия им. А.П.Карпинского, 1999 г).
Двадцатое столетие увенчалось замечательным открытием новой области физической химии элементарного акта, названной "фемтохимия", и нобелевской премией по химии 1999 г американскому ученому, египтянину А.Зевейлу (A.Zewail) "за его исследования переходных состояний методом фемтосекундной (10–15 сек) лазерной спектроскопии". Достигнут предел измерения скоростей химических реакций. Появилась возможность следить за процессами, протекающими за время одного колебания атомов в химической связи – 10 – 100 фс. Переходное состояние ряда реакций фиксируется с разрешением 0.1 Å по координате реакции с полным спектральным портретом. Достигнут уровень разрешения соседних энергетических состояний ~10–4 см–1.
Все результаты изучения "неравновесной" кинетики химических реакций на микроуровне чрезвычайно важны для обоснования базовых принципов химической кинетики, но пока мало полезны для решения задач макроуровня – исследования механизмов сложных реакций в газах, растворах и на поверхности твердого тела в условиях максвелл-больцмановского распределения, т.е. задач "равновесной" кинетики химических реакций. Если задача выяснения механизмов и построения кинетических моделей сложных реакций для "равновесной" кинетики газофазных радикально-цепных реакций решается практически (вследствие возможности построения максимальных механизмов или реакционных сетей с известными константами скорости элементарных стадий), то для сложных многомаршрутных процессов в растворах и на поверхности решение этой задачи только начинается. Эта проблема XXI века.
Существует три типа математических моделей (математического описания) сложных процессов. Стохастические модели используют вероятностные представления о процессах в объекте исследования. Вычисляются функции распределения вероятностей для переменных параметров модели (концентрация, температура в случае химических процессов). Эти модели пока что редко используются в химической кинетике, но они оказались полезными для описания и моделирования поведения больших систем (химических комплексов, химических предприятий). Статистические модели используют для описания эксперимента на работающем объекте исследования. Описывается связь значений входящих в систему и выходящих из системы переменных без использования физико-химической информации о происходящих в объекте процессах (модель черного ящика). Математическим описанием поведения системы обычно являются уравнения в форме полиномов. Для обеспечения статистической независимости параметров модели используют планирование эксперимента (например, ортогональные планы эксперимента). Детерминированные модели основаны на закономерностях физико-химических процессов с определенной структурой модели. Именно такими моделями являются теоретически обоснованные кинетические модели. Детерминированным, структурным, теоретически обоснованным кинетическим моделям (КМ) химических процессов и будет посвящен данный курс лекций.
При математическом моделировании каталитического процесса существует определенная иерархия математических моделей. Модели первого уровня – кинетические модели процессов на зерне твердого катализатора или в элементарном объеме жидкой фазы в гомогенной реакции, неосложненные процессами переноса массы, тепла и гидродинамическими факторами. Модели второго уровня в гетерогенном катализе рассматривают процессы в слое катализатора, а модели третьего уровня в гомогенном и гетерогенном катализе – это модели реактора в целом, включая все процессы переноса и структуру потоков. Модели первого уровня (КМ) будут рассматриваться в настоящем курсе лекций. Такие модели нужны для исследования новых реакций, для оптимизации каталитических процессов, расчетов промышленных реакторов (как составные части математической модели реактора), для создания систем автоматизированного управления процессом.
О понятии “механизм реакций”
Итак, в основе построения КМ лежит механизм процесса, т.е. совокупность элементарных стадий, приводящая к превращению исходных реагентов в конечные продукты реакций, причем для одной и той же реакции (каталитической или некаталитической) существует некоторое конечное множество механизмов, определяемое существующим на сегодня объемом знаний и действующими в химии парадигмами.
Например, для реакции нуклеофильного замещения в ароматическом ядре ArX (некаталитической, катализируемой комплексами металлов или индуцированной переносом электронов с ArX и на ArX) установлено 8 механизмов: