Производные изоксанолы получение, свойства и применение
Однако из экспериментальных данных следует, что это предположение выполняется только для цис-замещенных олефинов, например соединения XVI. Для терминальных и гранс-дизамещенных олефинов нужно рассматривать не только переходное состояние (А) с ортогональным атомом кислорода в аллильном положении, но и кон-формацию (В) с наклоном заместителя к плоскости связи С=С, с помощью которой можно объяснить заметную селективность присоединения в этих случаях (XIV, XV). Ориентирующее влияние «аллильного» кислорода проявляется в совокупности с другими факторами строения аллильного заместителя. Так, необходимо учитывать объем заместителя при связи С==С (ср. VI, IX, XI, XIV) и наличие аллильного хирального центра, вызывающего асимметрическую индукцию. При присоединении бензонитрилоксида к хиральным олефинам соотношение диастерео-изомерных изоксазолинов меняется в зависимости от строения олефина, достигая значительной величины при наличии пятичленного цикла в аллильном положении (ср. VI, IX, XIV). По данным расчетов моделей переходного состояния конформация с антиперипланарным расположением группы СН2Х предпочтительна для любого — эритро- или трео-диастереомера, поскольку в этом случае не сказывается стерический эффект заместителя X. Вопрос, однако, состоит в том, как расположен заместитель Y — «внутри», как в эритроизомере, или «снаружи», как в тpeoизомере. При увеличении объема заместителя Y резко меняется стереохимический результат (ср. XII и XIII, табл. 1): возрастает количество более выгодного эритроизомера, поскольку стерический фактор Y в тpeoконформации должен сказываться больше.
Стереохимический результат внутримолекулярного циклоприсоединения определяется совокупностью многих факторов строения субстрата. Для монозамещенных терминальных алкенов стереоселективность контролируется напряжением формирующейся бициклической системы
Отмеченный для межмолекулярного циклоприсоединения амты-ориен-тирующий эффект аллильного асимметрического центра с объемнымзаместителем вблизи него при внутримолекулярном циклоприсоединении не проявляется в заметной степени. Согласно данным расчетов моделей переходного состояния реакции для Z-алкенов предпочтительна конформация Х1Ха с расположенным «внутри» по отношению к образующейся связи С—О наименьшим по объему заместителемаллильного хирального центра; диастереоселективностью управляют главным образом стерические факторы. Для имеющей меньше стерических ограничений двойной связи Е-алкенов предполагают, что «внутри» находится средняя по объему группа Y, поскольку наблюдается зависимость стереоселективности от электронных факторов заместителей Y и X.
При этом, если одним из заместителей аллильного стереоцентра является гетероатом, стереоселективность внутримолекулярного циклоприсоединения резко возрастает. Так, высокую стереоселективность, показанную аллиловыми эфирами на основе глицеринового альдегида, связывают именно с электронными факторами обоих — аллильного и гомоаллильного атома кислорода. Таким образом, влияние алкоксильной группировки Y у аллильного стереоцентра («inside alkoxy effect») на стереоселективность как меж-, так и внутримолекулярного циклоприсоединения, очевидно, обусловлено как электронным фактором гетероатома, так и объемом всей группы RO.
В заключение следует отметить, что в стерерконтроле нитрилоксидного синтеза решающую роль играет строение олефина. Описан ряд случаев; когда присоединение нитрилоксидов весьма сложного строения к простым олефинам протекает без заметной селективности и лишь при использовании оптически активных нитрилоксидов наблюдается некоторый перенос хиральности. Поэтому нитрилоксиды рассматривают как относительно малые циклоадденды, и только для объемного и. оптически активного нитрилоксида можно предположить, что циклоприсоединение будет происходить с тем большей стереоизбирательностью, чем больше будет условий для осуществления стереоизбирательности в конкретном олефине.
Использование информации о факторах стереоконтроля нитрилоксидного синтеза дало возможность; успешно осуществить стереоселективные синтезы изоксазолиновых предшественников 2-дезокси-Б-рибозы, ключевого интермедиата в синтезе углеводов — «компактинлактона», метаболита антибиотика антимицина — бластмицинона и других природных соединений.
2.2. Реакции модификации производных изоксазола
Изоксазольный цикл устойчив к действию многих обычно используемых в синтезе реагентов — сильных кислот, мягких восстановителей, сильных окислителей. Положительный аспект латентной функциональности изоксазольного ядра состоит в том, что в различные положения молекулы можно ввести функциональные группировки или модифицировать уже имеющиеся, не затрагивая сам гетероцикл. При этом малый геометрический размер и компактность гетероцикла не создают препятствий для проведения реакций.
Основной путь модификаций 2-изоксазолинов базируется на их способности вступать в реакции замещения. При действии сильных оснований происходит отрыв либо одного из аллильных протонов при атоме С(4) цикла (4-эндо-депротонирование), либо в заместителе при С(3) цикла (3-экзодепротонирование) с образованием стабильного при -60—80°С аниона, который может взаимодействовать с различными электрофилами. Так, 3,5-дифенилизоксазолин XX при действии диизопропиламида лития (LDA) в ТГФ при - 78 °С образует 4-экзо-анион (С), алкилирование которого происходит транс-стереоселективно по отношению к заместителю при С(5). Этот метод позволяет получать 4-транс-R-изоксазолины XXI, которые не всегда доступны реакцией нитрилоксидного присоединения к транс-алкенам из-за ее низкой селективности. Потенциальные предшественники аминосахаров — 4-гидроксиизоксазолины XXII — недоступны нитрилоксидным синтезом, поскольку в циклоприсоединении заместитель OR алкена занимает положение 5 гетероцикла, но их также можно получить методом транс-селективного 4-эндо-гидроксилирования.
Атом водорода при третичном атоме С(4) в 4-метилизоксазолине XXI (Е=Ме) может снова отщепляться, благодаря чему возможно получение 4-гем-диметилизоксазолина. Для 3-алкилзамещенных изоксазолинов было установлено, что алкилирование заместителя при С(3) идет после алкилирования цикла, т. е. 4-эндопротон имеет более высокую кинетическую кислотность и депротонируется первым. Для 3,4,5-тризамещенных изоксазолинов, в частности для 3-алкил-4,5-цикло-пентаноизоксазолинов, предпочтительное 3-экзо-алкилирование объясняется меньшей кинетической кислотностью эндометинового водорода по сравнению с экзометильным водородом. Региоселективность депротонирования зависит, однако, от используемого растворителя: в неполярных растворителях наблюдается региоспецифическое 3-экзо-депротонирование. Значительное увеличение региоселективности достигается при использовании более объемного литийамидного основания.
Факторы стереоселективности эндоалкилирования гетероцикла были изучены на примере изоксазолинов XXIII и установлено, что кислородсодержащий заместитель при атоме С(5) направляет алкильный заместитель преимущественно в транс-положение. Предполагается, что в реакции образуется переходный комплекс (D), в котором кислород заместителя OR при С(5) хелатируется с катионом лития, координированным с 4-эндоанионом, тем самым син-сторона этого комплекса закрывается для атаки электрофильной частицей. Таким образом обеспечивается предпочтительность введения новой алкильной группы напротив OR, даже в случае 4-метил-5-алкоксиизоксазолина.