Проект ректификационной установки непрерывного действия для разделения смеси метиловый - этиловый спирт
Рефераты >> Химия >> Проект ректификационной установки непрерывного действия для разделения смеси метиловый - этиловый спирт

;

;

,

где хА – мольная доля низкокипящего компонента в жидкости;

МА – молекулярная масса низкокипящего компонента, кг/кмоль;

МВ – молекулярная масса высококипящего компонента, кг/кмоль.

Молекулярная масса метилового спирта – 32 кг/кмоль, этилового спирта – 46 кг/кмоль.

Массовый расход исходной смеси, кг/с, определим по формуле

кг/с

Массовый расход кубового остатка, кг/с, определим по формуле

Gw = Gf – Gd = 8,13-1,32=7,81кг/с

По имеющимся данным о равновесии между жидкостью и паром строим изобары температур кипения и конденсации смеси t=f(x,y) (Рисунок 1) и линию равновесия на диаграмме y=f(x) (Рисунок - 1).

Рисунок 1- Зависимость температур кипения и конденсации от состава фаз

Затем рассчитаем минимальное флегмовое число

Rmin=( xd – у*f )/( у*f – xf )=( 0.95 - 0.3)/(0.3-0.22) = 8,06

где у*f - мольная доля НКК в паре, равновесном с исходной смесью, определяется по диаграмме х-у (рис 2) у*f = 0,3

Оптимальное флегмовое число определим из условия получения минимального объема колонны, пропорционального произведению nT(R+1),где nT –число ступеней изменения концентрации (теоретическое число тарелок).

Таблица 2- Данные для расчета оптимального флегмового числа

β

R= β Rmin

В

nт(R+1)

1,1

8,87

0,09

17

167,7

1,2

9,67

0,08

15

160,05

2,0

16,1

0,05

12

205,2

2,8

22,57

0,04

11

259,3

3,6

29,02

0,03

10

300,2

Строим график зависимости nт(R+1) от R. Находим min точку и опускаем из неё перпендикуляр на ось Х. Эта точка и будет являться оптимальным флегмовым числом. В нашем случае Rопт=9,67.

Рисунок 2 – Определение оптимального флегмового числа.

Уравнение рабочих линий

А) Верхней (укрепляющей) части колонны

Б) Нижней (исчерпывающей) части колонны

1.2 Определение скорости пара и диаметра колонны

Рассчитываем средние концентрации низкокипящего компонента в жидкости:

а) верхней (укрепляющей) части колонны:

;

.

б) нижней (исчерпывающей) части колонны:

;

.

Средние температуры пара определяем по t - x,y (Рисунок 1):

а) при ;

б) при .

Средняя плотность жидкости в колонне:

где: ρА,ρВ – плотности низкокипящего и высококипящего компонентов при средней температуре в колонне, соответственно, кг/м3

а) верхней (укрепляющей) части колонны:

б) нижней (исчерпывающей) части колонны:

Для колоны в целом:

Рассчитываем средние концентрации низкокипящего компонента в паре:

yF – концентрация низкокипящего компонента в паре на питающей тарелке. Определяется в точке пересечения линий рабочих концентраций, построенных при оптимальном флегмовом числе R=9,67.

yF=0,29

а) верхней (укрепляющей) части колонны:

.

б) нижней (исчерпывающей) части колонны:

.

Средние температуры пара определяем по t - x,y (рис.4):

а) при ;

б) при.

Средние мольные массы и плотности пара:

а) в верхней части колонны

;

б) в нижней части колонны

.

Средняя плотность пара в колонне:

;

а) в верхней части колонны

;

б) в нижней части колонны

;

.

Средняя плотность пара в колонне:

;

.

Определяем скорость пара в колонне. Принимаем расстояние между тарелками h = 450 мм. По графику (рис.4,8 стр.69 [2]) находим С = 630.

;

.


Страница: