Применение сингулярной матрицы в химии
О Г Л А В Л Е Н И Е
Введение
Глава 1. Общие сведения о сингулярном разложении и сингулярных матрицах
1.1. Ортогональное разложение посредством сингулярного разложения
1.2. Вычисление сингулярного разложения
Глава 2. Применение сингулярных матриц при многомерном анализе химических данных факторными методами
2.1. Общие сведения о факторных методах
2.2. Операции с матрицами и многомерный анализ данных
2.3. Свойства сингулярной матрицы
Заключение
Список используемой литературы
Введение
Как известно, химия часто оказывается на перекрестке разных дисциплин. Для химика всегда есть большой соблазн в том, чтобы заняться какой-то чрезвычайно узкой областью, где он останется защищенным от всех превратностей, наслаждаясь удобством положения единственного в своем роде специалиста. Чтобы постоянно быть в курсе дела и в готовности встретить любую новую ситуацию, химику требуется быть знакомым с огромным объемом информации, необходимой не только для движения вперед, но и просто для сохранения своего положения.
При написании данного реферата была использована следующая литература, содержащая информацию о сингулярных матрицах и применении их в химии:
· книга «ЭВМ помогает химии» (пер. с англ) под ред. Г. Вернена, М. Шанона, в которой рассмотрено применение ЭВМ в различных областях химии: синтез органических соединений, кристаллография, масс-спектрометрия и т. д.
· книга Ч.Лоусона и Р.Хенсона «Численное решение задач метода наименьших квадратов» (пер. с англ), посвященная изложению численных решений линейных задач метода наименьших квадратов.
Глава 1. Общие сведения о сингулярном разложении и сингулярных матрицах
1.1. Ортогональное разложение посредством сингулярного разложения
В этом пункте данного реферата будет описано одно практически полезное ортогональное разложение т x n - матрицы А. Мы покажем здесь, что невырожденную подматрицу R матрицы A можно еще более упростить так, чтобы она стала невырожденной диагональной матрицей. Получаемое в результате разложение особенно полезно при анализе влияния ошибок входной информации на решение задачи НК.
Это разложение тесно связано со спектральным разложением симметричных неотрицательно определенных матриц ATA и AAT.
Теорема (сингулярное разложение). Пусть А - m x n -матрица ранга k. Тогда существуют ортогональная m x m матрица U, ортогональная n x n -матрица V и диагональная m x n -матрица S) такие, что
Матрицу S можно выбрать так, чтобы ее диагональные элементы составляли невозрастающую последовательность; все эти элементы неотрицательны и ровно k из них строго положительны.
Диагональные элементы S называются сингулярными числами А.
Доказательства данной теоремы приводить не имеет смысла во избежание нагромождения множества сложных математических выкладок, прямого отношения к теме, рассматриваемой в данном реферате, не имеющих. Ограничимся следующим численным примером, в котором дано сингулярное разложение матрицы А вида:
1.2. Вычисление сингулярного разложения
Рассмотрим теперь построение сингулярного разложения т Х n - матрицы в предположении, что т > п. Сингулярное разложение будет вычислено в два этапа.
На первом этапе А преобразуется к верхней двухдиагональной матрице посредством последовательности (не более чем из n — 1) преобразований Хаусхолдера
где
Трансформирующая матрица выбирается так, чтобы аннулировать элементы i + 1, ., т столбца i; матрица Hi — так, чтобы аннулировав элементы i + 1, п строки / - 1.
Заметим, что Qn - это попросту единичная матрица. Она включена, чтобы упростить обозначения; Qn также будет единичной матрицей при от = я, но при т > п она, вообще говоря, отличается от единичной.
Второй этап процесса состоит в применении специальным образом адаптированного QR-алгоритма к вычислению сингулярного разложения матрицы
Здесь - ортогональные матрицы, a S диагональная.
Можно получить сингулярное разложение А:
Сингулярное разложение матрицы В будет получено посредством следующего итерационного процесса:
Здесь - ортогональные матрицы, а Bk- верхняя двухдиагональная матрица для всех k.
Заметим, что диагональные элементы матрицы полученной непосредственно из этой итерационной процедуры, не являются в общем случае ни положительными, ни упорядоченными. Эти свойства обеспечиваются специальной последующей обработкой.
Сама итерационная процедура представляет собой (QR-алгоритм Фрэнсиса, адаптированный Голубом и Райншем к задаче вычисления сингулярных чисел.
Глава 2. Применение сингулярных матриц при многомерном анализе химических данных факторными методами
2.1. Общие сведения о факторных методах
Многомерный анализ данных играет все возрастающую роль во многих научных дисциплинах, включая науки о земле, жизнеобеспечении, в социологии, а также менеджменте. Однако в химии эти методы развивались не так быстро. Хотя основы методов были созданы в начале века, а области их применения были определены в тридцатых годах , первые случаи их использования отмечены только в шестидесятых годах. Действительно, наиболее часто применяемыми в хемометрике методами стали факторный анализ (ФА), анализ (метод) главных компонент (МГК) и факторный дискриминантный анализ (ФДА).
Хемометрика преследует две цели :
· извлечение максимума информации за счет анализа химических данных;
· оптимальное планирование измерительных процедур и экспериментов.
Первая цель может быть подразделена на две:
1) описание, классификация и интерпретация химических данных;
2) моделирование химических экспериментов, процессов и их последующая оптимизация.
Из всего многообразия видов обработки наборов химических данных можно выделить некоторые наиболее характерные области применения:
· многокомпонентный анализ спектрометрических или хромато-графических данных различных смесей. Цель анализа — определение числа компонентов и иногда также их идентификация. Для решения задач, связанных с равновесиями в растворе и сложной кинетикой, используется факторный анализ;