Получение платины из стоков процесса рафинирования металлов платиновой группы
Рефераты >> Химия >> Получение платины из стоков процесса рафинирования металлов платиновой группы

ВВЕДЕНИЕ

В ходе работ по выделению ценных элементов из стоков процесса рафинации платиновых металлов было установлено, что все возможные методы, дающие отличные результаты при использовании синтетических модельных растворов, оказываются непригодными для обработки реальных стоков процесса рафинации. Химический анализ обработанных стоков не показывает присутствия значительных количеств элементов, однако при выпаривании раствора досуха спектрографическое исследование остатка позволяет установить, что в растворе содержится до 100 мг/л различных металлов. Поскольку не существует методов для выделения этих соединений, их структура не может быть установлена. Эти соединения разлагаются с малой скоростью, выделяя аммиак.

Глава 1. РАФИНИРОВАНИЕ ПЛАТИНОВЫХ ОТХОДОВ ЭЛЕКТРОЛИЗОМ В РАСПЛАВЛЕННЫХ СОЛЯХ

Электролиз расплавленных хлоридов является эффективным способом очистки платиновых металлов от металлических и неметаллических примесей.

На заводе электролитическое рафинирование в расплавленных солях применяется с 1981 г. Первоначально этот способ использовался для очистки иридия.

Электролиз в расплавах солей используется для очистки ломов катализаторных сеток и стеклоплавильных аппаратов. Электролитическое рафинирование в расплавленных солях имеет ряд несомненных преимуществ по сравнению с традиционными, гидрометаллургическими способами очистки:

Экологическая чистота процесса;

Высокая степень очистки;

Малостадийность;

Компактность, небольшой объем электролизеров и занимаемой ими площади;

Простота управления процессом, высокая степень автоматизации.

К недостаткам процесса электролитического рафинирования в расплавах солей можно отнести невозможность разделения платиновых металлов друг от друга, но для данной задачи это и не нужно.

Процесс ведут в электролизерах закрытого типа, в атмосфере очищенного инертного газа. Электролит – расплав хлоридов натрия, калия и цезия.

Необходимую концентрацию платины, палладия и родия в электролите задают хлорированием металлов в расплаве.

Рафинируемый металл, который одновременно является и растворимым анодом, предварительно переплавляют и отковывают в пластины. Суммарное содержание металлических примесей в исходном металле составляет от 0,1 до 0,5 мас. %. Катод - в виде полого цилиндра, свернутый из листовой заготовки толщиной 1,0 мм из сплава ПлРд-7 или ПлРд-10.

Контейнером для анодного металла и электролита служит графитовый тигель диаметром 0,4 м с пирографитовым покрытием. Через него осуществляется подвод тока к анодному металлу.

Электролизер изготавливается из нержавеющей стали. Его основные узлы - реторта, крышка реторты, шиберное устройство и шлюзовая камера. Процесс рафинирования ведется при температуре расплава 500-600 0С.

Процесс рафинирования состоит в следующем: при включении постоянного тока на аноде происходит растворение - основной металл (платина) и примеси переходят в расплав в виде комплексных ионов, а на катоде - разряд ионов до металла, при этом примеси неблагородных металлов остаются в расплаве (электролите). Если в электролите присутствуют ионы разных платиновых металлов, то идет совместный разряд с образованием сплава.

Сопоставление изменения состава электролита и состава катодных осадков в процессе электролиза показывает, что независимо от природы металла-платиноида, наблюдается общая тенденция: увеличение концентрации ионов платинового металла в электролите вызывает повышение содержания этого компонента в сплаве.

Однако, характер изменения концентрации ионов металла в расплаве в процессе электролиза определяется природой металла, прежде всего его равновесным потенциалом.

Концентрация ионов более электроположительного металла (Pt) в новом электролите значительно уменьшается за период, равный приблизительно 103 А x час, а концентрация ионов более электроотрицательных металлов (Pd, Rh) за этот же период растет. После этого наступает стационарное состояние. Состав катодных осадков также становится постоянным и близким по составу к исходному составу анода.

Структура катодных осадков для чистой платины и её сплавов является дендритной. Основные типы дендритов – двумерные 2D <110>, 2D<112> - <110> и игольчатые <110>. Каждому типу дендрита по данным рентгенофазового анализа соответствует определенный состав сплава.

Дендритные осадки плохо сцеплены с катодом, что с одной стороны позволяет легко очистить матрицу от катодного осадка и использовать её многократно в процессе рафинирования, а с другой стороны – уменьшается катодный выход по току вследствие осыпания дендритов. Захват электролита катодными осадками составляет 10-15 % от массы осадка. После отмывки от солей катодные осадки сушат и переплавляют в слитки.

Металл после очистки хорошо поддается пластической деформации, т.е. обладает повышенными технологическими свойствами на всех переделах при изготовлении катализаторной сетки.

Отработанный электролит после окончания цикла очистки используется, как правило, повторно. При необходимости он может быть регенерирован для повышения концентрации платиновых металлов в электролите. Анодные остатки, выход которых составляет 5-7 % от массы анода, снова поступают на электролиз.

Электролитическим рафинированием удается очистить загрязненный металл практически от всех примесей неблагородных металлов и различных металлических включений, таких, как оксиды алюминия, кремния, магния, циркония и др. Степень очистки от примесей тугоплавких металлов, например вольфрама, при электролизе более чем на порядок выше по сравнению с электронно-лучевой плавкой.

По данным спектрального анализа общее содержание примесей неблагородных металлов не превышает 10-3 мас.%.

Иридий и рутений образуют сплошные осадки, что дает возможность изготавливать из них изделия методом гальванопластики.

Электролиз в водных электролитах.

Шлиховое золото (содержание золота не менее 70 % и серебра до 20 %) после сплавления в аноды перерабатывается электролизом в водных растворах. Особенность переработки заключается в том, что золото чистотой 99,95 % и более получают за одну стадию электролиза.

Шламы золотого электролиза, содержащие хлорид серебра, после выщелачивания золота и платиноидов в царской водке, переплавляют с содой. Полученные аноды направляют на электролитическое рафинирование серебра. Серебряные отходы с содержанием серебра не менее 70 % также перерабатываются электролизом. За одну стадию получают серебро чистотой 99,995-99,998 %. Из шламов электролиза серебра также извлекаются золото и платиноиды.

Отходы ювелирных золотых сплавов и бедные по содержанию золота отходы предварительно переплавляют в гранулы и перерабатывают в две стадии. Сначала гидрометаллургическим способам (восстановлением золота из солянокислого раствора) выделяют золото в виде губки чистотой 99,8-99,9 %. Полученную золотую губку можно использовать для приготовления стандартных сплавов или, после сплавления в аноды, провести вторую стадию очистки электролизом в водных растворах.


Страница: