Полимеры
Рефераты >> Химия >> Полимеры

В результате полимеризации этих непредельных углеводородов образу­ются высокомолекулярные вещества, называемые каучуками:

1. натуральный изопреновый каучук

2. синтетический бутадиеновый каучук

Природный каучук стал известен в Европе ещё в конце XV в. Первыми из европейцев его увидели участники второго путешествия Христофора Колумба в Америку (1493—1496 гг.). Тогда они узнали, что американские индейцы получают «слезы дерева» (на их языке «кау» означало «дерево», а «учу» — «течь», «плакать») из млечно­го сока тропического растения гевея и используют его для изготовления обуви, мячей, небьющейся посуды. Однако в Европе в течение долго­го времени экзотический материал не находил никакого применения. Только в 1823 г. шотландский изобре­татель Чарлз Макинтош (1766—1843) предложил пропитывать ткань сме­сью каучука с органическим раство­рителем. В результате был получен не­промокаемый материал. Макинтош первым организовал производство таких тканей и пошив из них дожде­вых плащей. Правда, у этих плащей были весьма неприятные недостат­ки — они прилипали к телу в жаркую погоду и трескались в холодную.

В 1834 г. американский изобрета­тель Чарлз Гудьир (1800—1860) пред­ложил вводить в каучук оксиды магния и кальция, а в 1839 г. изучил действие нагрева на смесь сырого каучука с оксидом свинца и серы. Полученный в результате новый материал назвали резиной (от греч. «резина» — «смола»), а процесс превращения каучука в ре­зину при нагревании с серой — вулка­низацией (по имени римского бога ог­ня Вулкана).

Резина, в отличие от каучука, пред­ставляет собой сшитый полимер. Од­нако благодаря большому расстоя­нию между сшивками макромолекулы не теряют способности выпрямлять­ся при растяжении и сворачиваться в клубки после снятия механической нагрузки. С другой стороны, сшивки не дают резине плавиться при на­гревании и кристаллизоваться при охлаждении. Таким образом, резина, находясь в аморфном состоянии, со­храняет свои механические свойства в более широком диапазоне темпера­тур, чем каучук.

С развитием автомобилестроения в конце XIX в. резко возрос спрос на автомобильные шины, и резина, со­четающая эластичность с высокой механической прочностью, оказа­лась единственным подходящим ма­териалом для их изготовления. Для производства шин с каждым годом требовалось всё больше резины, а следовательно, и натурального каучу­ка. Тогда каучук получали по старин­ке — из млечного сока гевеи. Основ-

ными поставщиками этого ценного природного полимера были тропиче­ские страны — Бразилия, английские и французские колонии в Юго-Вос­точной Азии. Для получения 1000 т растительного полимера необходимо было обработать 3 млн каучуконос­ных деревьев и затратить на это в те­чение года труд 5,5 тыс. человек.

Таким образом, необходимый для изготовления резины натуральный каучук был достаточно дорогим и де­фицитным материалом. По этой при­чине в первой половине XX в. хими­ки настойчиво искали вещества, способные заменить каучук и синте­зируемые из доступных дешёвых со­единений.

Первой страной, освоившей про­мышленное производство синтети­ческого каучука, стал Советский Со­юз. В конце 20-х гг. русский химик Сергей Васильевич Лебедев (1874— 1934) занялся проблемой полимери­зации бутадиена-1,3. Учёный и его коллеги нашли подходящий катали­затор — им оказался металлический натрий. И в 1927 г. исследователь, проведя ионную каталитическую по­лимеризацию, получил первые об­разцы синтетического натрий-бута­диенового каучука:

Лебедев и его группа разработали также дешёвый способ получения бу­тадиена-1,3 из этилового спирта.

Промышленное производство бу­тадиенового каучука было налажено в 1932 г., когда вступили в строй опыт­ные заводы в Ярославле и Воронеже.

В 1935 г. наступила новая эра в про­изводстве синтетических каучуков — их стали делать из сополимеров, полу­чаемых радикальной полимеризацией 1,3-бутадиена в присутствии стирола, акрилонитрила и других соединений. Сополимеры бутадиена начали быст­ро вытеснять другие каучуки в произ­водстве автомобильных шин.

Наибольшее распространение в этой области имеет бутадиен-сти-рольный каучук — продукт радикаль­ной сополимеризации бутадиена и стирола.

Он широко применяется в произ­водстве резины для легковых автомо­билей, однако шины для грузовиков и самолётов по-прежнему делают из натурального или синтетического полиизопренового каучука.

В 1953г. благодаря открытию ка­тализаторов Циглера — Натты учё­ным всё-таки удалось получить регу­лярные полибутадиен и полиизопрен, которые по прочности и эластично­сти превосходили все известные к то­му времени синтетические каучуки.

Вскоре выяснилось, что по составу и строению макромолекул регуляр­ный полиизопрен тождествен нату­ральному каучуку, и химики реализо­вали свою давнюю мечту — получать в промышленном масштабе каучук гевеи.

Синтетические каучуки в значи­тельной степени вытеснили нату­ральный каучук; например, в 1985 г. в мире было произведено 12 млн тонн синтетического каучука и толь­ко 4 млн тонн натурального.

Что такое поликонденсация

Образование макромолекул полимеров из мономеров возможно не толь­ко путём полимеризации, которая характерна для соединений с кратны­ми связями. Есть ещё олин процесс, приводящий к получению полиме­ров, — поли конденсация. Если при полимеризации превращение мономера в полимер происходит без выделения каких-либо соединений, то реакция поликонденсаиии состоит во взаимодействии функциональных групп мо­лекул мономеров и сопровождается выделением воды, аммиака или хло-роводорода.

«Волшебная резинка»

Расширение тел при нагревании — факт общеизвестный: увеличиваются в объё­ме и газы, и жидкости, и твёрдые тела. Правда, если температура изменяется всего на несколько десятков градусов, у твёрдых тел эффект почти незаметен. А вот про высокомолекулярные соеди­нения — полимеры этого уже не ска­жешь. Только не про любые, а про вы­сокоэластичные, да ещё растянутые.

В 1805 г. английский учёный Джон Гух обнаружил поразительную вещь:

растянутый жгут из полосок натураль­ного каучука становился короче при на­гревании и длиннее при охлаждении! Через полвека его соотечественник Джеймс Прескотт Джоуль, проведя тщательные измерения, подтвердил наблюдения своего предшественника. В научной литературе это явление на­зывается эффектом Гуха — Джоуля.

Опыт Гуха легко воспроизвести. К подвешенной на штативе резиновой ленте (чем длиннее и эластичнее, тем лучше) привязывают гирю, которая её, естественно, растянет. Если теперь об­дувать ленту горячим воздухом (на­пример, из фена) или поливать горячей водой, она сократится, причём доволь­но сильно. И наоборот, при охлаждении лента растянется, а гиря опустится. Если проделать то же самое с нерастя­нутой лентой, будем наблюдать обычное для твёрдых тел незначительное увеличение размеров при нагревании и такое же слабое сжатие при охлаж­дении.

Чем же отличается растянутая рези­новая лента от просто лежащей? Фор­мально эффект Гуха — Джоуля можно пояснить на основе принципа Ле Ша-телье: любое воздействие на систему, находящуюся в состояние равновесия, приводит к изменениям, которые как бы противодействуют внешним силам. В данном случае воздействие извне — нагревание или охлаждение. Если быст­ро и сильно растянуть эластичный ре­зиновый бинт, он слегка нагреется (это можно ощутить, прикоснувшись к нему губами). Если же через некоторое вре­мя, когда бинт примет комнатную тем­пературу, резко снять нагрузку, то, со­кратившись, резина станет холоднее, чем была. В соответствии с принципом Ле Шателье при нагревании растянутой резиновой ленты в ней должны начать­ся процессы, которые будут стремиться её охладить. А охлаждение, как показы­вает опыт, происходит именно при со­кращении ленты. И наоборот, при охлаждении растянутой резины в ней идут процессы, приводящие к выделе­нию теплоты, поэтому лента ещё силь­нее растягивается.


Страница: