Поли-е-капроамид
Содержание.
Введение.
Описание и свойства поли-е-капроамида
Структура и конформация Поли-е-капроамида. Схема
реакций получения.
Получение Поли-е-капроамида
Применение Поли-е-капроамида
Заключение
Список литературы
Введение.
Жизнь современного человека трудно представить себе без всевозможных искусственных и синтетических материалов. Из них сделаны большинство предметов нашей повседневной жизни. Натуральные же, природные, материалы давно перешли из разряда самых простых и доступных в разряд роскоши, доступной далеко не каждому. Одно из основных мест среди искусственных материалов в нашей жизни занимают полимерные вещества. Мы встречаемся с ними ежедневно: корпуса бытовой техники и электроники, упаковка продуктов, одежда и т. п. Природные и искусственные полимеры сыграли большую роль в современной технике, а в некоторых областях остаются незаменимыми и до сих пор, например в целлюлозно-бумажной промышленности. Однако резкий рост производства и потребления органических материалов произошел за счет синтетических полимеров – материалов, полученных синтезом из низкомолекулярных веществ и не имеющих аналогов в природе. Развитие химической технологии высокомолекулярных веществ – неотъемлемая и существенная часть современнойпромышленности. Без полимеров уже не может обойтись ни одна отрасль техники, тем более новой.
Полимером называется органическое вещество, молекулы которого состоят из одинаковых, многократно повторяющихся, звеньев – мономеров. Размер молекулы полимера определяется чилом этих звеньев(степенью полимеризации n). Если n= от 10 и выше, то такие вещества называют олигомерами. Если n значительно больше 10, то вещества называют полимерами.С возрастанием n увеличивается вязкость, вещество становится воскообразным, наконец, при n=1000 образуется твердый полимер. Степень полимеризации неограниченна: она может быть 104, и тогда длина молекул достигает микрометров. Молекулярная масса полимера равна произведению молекулярной массы мономера и степени полимеризации. Обычно она находится в пределах от 103 до 3×105. Столь большая длина молекул препятствует их правильной упаковке, и структура полимеров варьирует от аморфной до частично кристаллической. Доля кристалличности в значительной мере определяется геометрией цепей. Чем ближе укладываются цепи, тем более кристалличным полимер становится. Кристалличность не может быть идеальной, всегда остаются аморфные участки.
Аморфные полимеры плавятся в диапазоне температур, зависящем не только от их природы, но и от длины цепей; кристаллические имеют точку плавления.
Независимо от вида и состава исходных веществ и способов получения материалы на основе полимеров можно классифицировать следующим образом: пластмассы, волокниты, слоистые пластики, пленки, покрытия, клеи.
Одним из самых популярных в промышленном и бытовом использовании волокнитов является поли-е-капроамид, который известен широкому кругу людей, как капрон. Необычайную популярность данный полимер приобрел благодаря, в основном, своим прочностным характеристикам и относительной дешевизне в получении. И сегодня трудно представить, например, нашу одежду без капроновых составляющих.
Поли-е-капроамид впервые был получен в 1899 г. Габриэлем и Маасом при поликонденсации е-аминокапроновой кислоты. При этом было сделано очень важное наблюдение, что нагревание е-аминокапроновой кислоты приводит к образованию наряду с полимером также и низкомолекулярного циклического продукта - е-капролактама.
Поли-е-капроамид впоследствии сыграл большую роль в развитии промышленности синтетических волокон: его стали широко применять в качестве исходного материала для производства волокна. Это произошло после того, как Шлак открыл в 1938 г., что е-капролактам при нагревании с водой способен полимеризоваться, образуя при этом высоко-молекулярный полимер. На основе этого цолиамида было создано синтетическое волокно, получившее название перлон или капрон.[8]
Описание и свойства Поли-е-капроамида:
Поли-е-капрамид по своему строению относится к полиамидам.
Полиамиды – высокомолекулярные соединения, содержащие в основании цепи макромолекулы повторяющиеся амидные группы – С(О) – NH –. Отличительной чертой полиамидов является наличие в основной молекулярной цепи повторяющейся амидной группы –C(O)–NH–. Различают алифатические и ароматические полиамиды. Известны полиамиды, содержащие в основной цепи как алифатические, так и ароматическиефрагменты. Обычное обозначение полиамидов на российском рынке ПА или PA. В названиях алифатических полиамидов после слова «полиамид» ставят цифры, обозначающие число атомов углерода в веществах, использованных для синтеза полиамида. Так, полиамид на основе ε-капролактама называется полиамидом-6 или PA 6. Полиамид на основе гексаметилендиамина и адипиновой кислоты – полиамидом-6,6 или PA 66 (первая цифра показывает число атомов углерода в диамине, вторая – в дикарбоновой кислоте). Помимо обычных обозначений для полиамидов могут использоваться и названия торговых марок: капрон, нейлон, анид, капролон, силон, перлон,рильсан.[4]
ПОЛИ-e-КАПРОАМИД (полиамид-6, капрон, капролон, перлон, силон, амилан, найлон-6, пласкон и т. д.) [—HN— —(СН2)5СО—]n, бесцветная рогоподобная, в тонких слоях прозрачная масса; степень кристалличности до 60%; среднемассовая мол. м. (10-35) · 103; т.пл. 2250C, температура размягчения - 2100C, температура хрупкости от -25 до -300C; плотность 1,13 г/см3; растворяется в концентрированных H2SO4 и концентрированных HCOOH, крезоле, фторированных спиртах и др. сильнополярных растворителях. Обладает высоким водопоглощением (до 12% по массе в зависимости от степени кристалличности).
Для Поли-е-капроамида характерны высокая износостойкость, устойчивость формы при повышенных температурах. Для промышленного Поли-е-капроамида: sраст=400-850 МПа (ориентированный Поли-е-капроамид),90 МПа; ударная вязкость 150-170 кДж/м2; модуль упругости при растяжении 500-750 МПа; относит. удлинение 20-35% (ориентированный); теплостойкость по Вика 160-1800C, по Мартенсу 40-45 0C; 1,7-2,1 кДж/(кг·К); 4,5-11,0 при 60 Гц и 3,6-4,3 при 1 МГц, 0,03-0,07 при 60 Гц и 0,03-0,13 при 1 МГц.[4] Устойчив к воздействию углеводородов, масел, спиртов, кетонов, эфиров, щелочей, слабых кислот. Не подвержен коррозии, может работать в соленой воде. Экологически чист. Имеет гигиенический сертификат на контакт с пищевыми продуктами и питьевой водой. Растворяется в крезолах, фенолах, концентрированных неорганических кислотах, муравьиной и уксусной кислотах.[6]
В инертной атмосфере не разлагается даже при его температуре плавления. При длительном хранении на воздухе, особенно при повышенных температурах, а также при обработке озоном он окисляется с образованием пероксидных групп (это свойство используют для прививки к Поли-е-капроамиду виниловых мономеров). Поли-е-капроамид не гидролизуется водой; заметный гидролиз происходит при нагревании и ускоряется в присутствии щелочей и особенно кислот.