Особенности химической формы развития материи
Рефераты >> Химия >> Особенности химической формы развития материи

Критерий сложности химических соединений, с одной стороны, является производным от критерия сложности элементов, а с другой - выступает как более сложный. Он должен включать шесть основных признаков: 1) количество атомов, составляющих соединение, 2) многообразие элементов, входящих в его состав, 3) сложность основного элемента (или элементов), на базе которого построено соединение, 4) длина цепи, 5) каталитическая активность, 6) способность вступать в многообразные типы реакций.

Все признаки, включенные в критерий сложности химических соединений, имеют более или менее общий характер и должны быть конкретизированы более частными признаками. Порядок, в котором они приведены, отражает последовательность применения их при определении природы химических соединений. Критерий сложности химических соединений может быть дополнен формальными критериями, в особенности информационным. Для применения критерия сложности необходима объективная шкала, составленная системой химического мира, в основе которой лежит магистральное направление развития. «Магистраль» развития не только делает применимым критерий слож­ности, определяя вес каждого входящего в него признака, но и вносит существенные дополнения к нему, главное из которых – роль химического соединения в общем процессе развития химизма, «вклад» его в процесс порождения жизни.

Общим направлением химической эволюции является движение от низшего к высшему, от простого к сложному. В пределах его можно выделить главное, или магистральное направление, связанное с углеродом, как наиболее сложным, и «перспективным» элементом, и другими элементами-органогенами. Все остальные направления химической эволюции, связанные с эле­ментами - неорганогенами, можно отнести к тупиковым, или побоч­ным, направлениям.

Химические элементы составляют низший, наиболее простой и исходный уровень химической эволюции. Они возникают в результате предшествующего физического процесса эволюции, обладают неоди­наковой физической и химической сложностью и, следовательно, раз­личными возможностями дальнейшего химического процесса разви­тия, различным потенциалом развития. Установлена за­мечательная особенность разнородного усложнения физических и хи­мических атомов в ходе роста их порядкового номера в системе Мен­делеева. Если в физическом отношении химические элементы, начи­ная с водорода, усложняются сравнительно однородно и линейно, так что уран и следующие за ним элементы оказываются безусловно более сложными, чем предшествующие, то химически элементы усложняют­ся нелинейно. Первоначально их химическая сложность быстро растет, достигая максимума у углерода, а затем резко падает. Уран в физичес­ком отношении сложнее, а в химическом — значительно проще, чем углерод. Последний — наиболее сложный химический элемент, обла­дающий наивысшим потенциалом химического развития. В той или иной мере близкими углероду эволюционными потенциалами облада­ют водород, кислород, азот, сера и фосфор. В силу этого углерод, во­дород, кислород и другие химические элементы играют главную роль в химической эволюции, закономерно приводящей к появлению жиз­ни, и называются поэтому элементами-органогенами. Менделеев пи­сал, что «ни в одном из элементов такой способности к усложнению не развито в такой мере, как в углероде».

В основе представления о химическом способе объективно-ре­ального существования и развития лежит понятие химической реак­ции. Претерпев большую эволюцию в истории науки, это понятие на­ходится в центре теоретических представлений современной химии. В понятии реакции химический способ объективно-реального существо­вания и развития определен применительно к отдельным превращени­ям. Химическая реакция — относительно самостоятельное превраще­ние, связанное с некоторым конечным числом реагирующих субстра­тов. На уровне понятия реакции не раскрывается целостная природа и направленность объективно-реального существования и развития ХФМ. Это делает необходимым перейти к более обобщенным и широ­ким понятиям.

Прямой субстратный синтез как интегральное направление химического развития

Химический процесс есть единство синтеза (ассоциации) и распада (диссоциации). Поскольку химический синтез приводит к усложнению веществ, он является химической формой прогресса, а диссоциация — химическим проявлением регресса. Если химический способ развития рассматривать только на уровне отдельных реакций, то может возникнуть представление о равенстве, равносильности про­цессов синтеза и распада. Однако более глубокий, целостный, системный подход к совокупному миру химических превращений дает осно­вания для вывода, что общим интегральным направлением химичес­ких превращений является прямой субстратный синтез. Коренная особенность такого синтеза состоит в том, что переход в новое, выс­шее качество, новую сущность не может быть осуществлен отдель­ным самостоятельно существующим субстратом. Для такого перехода отдельный химический субстрат нуждается в другом субстрате. В хи­мическом развитии новое качество, новая сущность выступают как па­ритетный результат двух или более химических субстратов.

Существуют три основных вида химического субстратного синтеза: элементарный, каталитический и информацион­ный, выясняется коренная особенность химического субстратного синтез состоящая в том, что переход в новое качество не может осуществлен отдельным самостоятельно существующим субстратом, поскольку он не обладает достаточным богатством вну­треннего .содержания и нуждается в существенном дополнении другим. В химическом развитии новое качество выступает как паритетный результат двух или более субстратов. По мере развития химическо­го в направлении к живому усиливается процесс субстанциализации, заключающийся в обогащении внутреннего содержания отдельного хи­мического субстрата как «субъекта изменений» (Маркс), повышении его роли в развитии химической формы материи как целого.

Субстратный синтез не является исключительном достоянием химической формы материи, – он существует также в физической форме, где выражен в четырёх основных видах, связанных о основными видами физического взаимодействия: гравитационным, слабым, электромагнитным и сильным. Субстратный синтез выступает в качестве общего для физичес­кой и химической форм материи способа объективно-реального суще­ствования и развития, однако он обладает в них своей существенной спецификой. Физические синтезы – суть масс-энергетические, т. е. синтезы, в которые непосредственно вовлечены масса и энергия как два важнейших свойства физической формы материи. Химический субстратный синтез — прежде всего над-массэнергетический синтез, хотя он и происходит с помощью физи­ческого (электромагнитного) синтеза, связанного с изменением вне­шней электронной оболочки атомов. В отличие от «суммарного» и «массового» характера физического синтеза (в особенности наиболее универсального — гравитационного), химический синтез имеет высо­коизбирательный характер, ибо происходит по законам химического сродства. Благодаря сродству, проявляемому качественно различными элементами друг к другу, химический синтез есть не просто притяже­ние субстратов, но их взаимное изменение с потерей ряда прежних и приобретением новых общих свойств. Это синтез избирательно вза­имодействующих качеств.


Страница: