Основные понятия координационной химии
Разные виды классификации:
Классификация комплексов по химической специфике лигандов.
1. Атомы элементов в качестве лигандов (H, O, N, C, S, Se, F, Cl и др.). Некоторые из них – координируются в виде одно- или двухзарядных анионов, другие не существуют в индивидуальном состоянии в мягких условиях (N, O, S).
ПРИМЕРЫ КОМПЛЕКСОВ
А) гидридные комплексы (например, гидриды рения). В комплексе рения K2ReH9 шесть атомов водорода находятся в вершинах тригональной призмы, а три атома водорода образуют правильный треугольник, лежащий на одинаковых расстояниях от обоих оснований призмы. Металл-комплексообразователь находится в центре эого треугольника.
Строение аниона [ReH9]2-
б) галогенидные комплексы:
Например, соединение K2PdCl4 является анионным комплексом и содержит тетрахлоропалладат-анион (PdCl4)2- (см. рис. выше).
В) Халькогенидные комплексы, т.е. содержащие серу, селен, теллур, связанные с центральным атомом. Примеры:
Как правило, комплексы содержат лиганды разного типа или лиганды, состоящие из разных атомов. Например, карбонилгидридные комплексы содержат одновременно и карбонильные (СО), и гидридные (Н-) лиганды, как это видно на примере карбонилгидридов хрома [(CO)5Cr]2(μ-H) или рения (CO)3Re(μ-H)3Re(CO)3.
В связи с вышесказанным такая классификация употребима главным образом для галогенидных или халькогенидных комплексов.
2. В качестве лигандов часто выступают отрицательно заряженные группы атомов – анионные лиганды –
Примером может служить кластерный комплекс платины состава Pt4(OCOCH3)8 :
В кластере четыре атома платины образуют квадрат с коротким расстоянием металл-металл. По каждой стороне квадрата координированы по две мостиковых ацетатных группы. В координации каждой ацетатной группы участвуют в одинаковой мере оба карбоксилатных атома кислорода, поставляя для образования донорно-акцепторной связи пару электронов с каждого атома кислорода, а еще один электрон делокализован между этими двумя атомами кислорода.
3. Лигандами могут быть устойчивые двухатомные и многоатомные молекулы:
N2, O2, CO, NO, NH3, NR3, H2O, R2O, SO2, CS2, PR3, RCN, C6H6
ПРИМЕРЫ:
Ni(CO)4 Co2(CO)8
В тетракарбониле никеля Ni(CO)4 атом металла помещен в центр тетраэдра, образуемого 4 атомами углерода карбонильных групп, поэтому комплекс имеет тетраэдрическое строение. В биядерном дикобальтоктакарбониле Co2(CO)8 каждый атом кобальта имеет квадратно-пирамидальное окружение, причем основание квадратной пирамиды образуют 4 атома углерода карбонильных групп, а вершину этой пирамиды – второй атом кобальта.
В сэндвичевых соединениях – дибензолхроме (C6H6)2Cr и ферроцене (C5H5)2Fe атом металла располагается между двумя плоскими ароматическими молекулами, каждая из которых связана с атомом металла по π-типу:
4. Лигандами могут служить молекулы или фрагменты молекул, которые не существуют в свободном состоянии или являются чрезвычайно неустойчивыми (карбены, карбины, нитрены и т.д.)
Карбеновые комплексы:
Карбиновые комплексы
Нитреновые комплексы – это фактически азотсодержащие аналоги карбенов, где нитреновый лиганнд связывается с центральным атомом за счет кратной связи металл-азот, как, например, в комплексе рения:
Классификация комплексов по специфике электронной конфигурации лигандов.
Этот тип классификации уже в какой-то мере отражает особенности химической связи металл-лиганд.
1. σ-лиганды – лиганды с одной или несколькими неподеленными парами электронов, локализованными на одном донорном атоме. Эти лиганды при взаимодействии с металлами образуют σ-комплексы. Их можно разделить на две группы:
а) лиганды, имеющие одну или несколько неподеленных σ-пар электронов и не имеющие энергетически доступных вакантных орбиталей – F-, H2O, ROH, NH3, H-,
2. π-лиганды – лиганды, донорные пары которых делокализованы на двух или более центрах и являются π-электронными парами. К таким лигандам относятся производные этилена, диенов, ацетилена, бензола и других ациклических и циклических ненасыщенных соединений.
ПРИМЕРЫ
Так, например, в анионе соли K[PtCl3(C2H4)] атом платины имеет плоско-квадратное окружение, в котором π-координированная молекула этилена занимает одно координационное место:
Или, например, в биc-π-аллильном комплексе никеля (см. рис.) каждый аллильный лиганд занимает 3 места в координационной сфере металла
Некоторые лиганды могут выступать в роли и σ-. и π-лигандов.
Это лиганды, имеющие вакантные σ- или π-орбитали – Br-, I-, PR3, R2S, SnCl3-. NO, CO, карбены, нитрены.
Так, например, монооксид углерода, который будет подробней рассмотрен ниже, является одновременно лигандом с σ-донорными и π-акцепторными свойствами, причем в разных соединениях, в зависимости от природы металла-комплексоообразователя, от его заряда, от влияния других лигандов, преобладают либо одни, либо другие свойства.