Осадительное титрование (седиметрия)
Укрупнению осадков способствует их выстаивание (старение) в растворе осадителя (маточном растворе) от 0.5 до 10 часов. При старении мелкие кристаллы растворяются, а крупные за счет увеличения концентраций маточного раствора растут.
В процессе образования возможно загрязнение осадков посторонними ионами, присутствующими в растворах. Происходит так называемое соосаждение. Его виды: адсорбция, окклюзия, инклюзия, образование твердых растворов и химических соединений. При адсорбции примеси осаждаются на поверхности осадка, при окклюзии захватываются внутрь кристаллов, инклюзии внутрь кристаллов захватывается маточный раствор, твердые растворы образуют вещества с близким строением кристаллической решетки. Обычно преобладают первые три вида соосаждения.
Для получения точных результатов ГМА соосаждение должно быть устранено рациональным выбором хода осаждения. Например крупные кристаллы имеют меньшую совокупную поверхность, чем мелкие, следовательно, меньше подвержены адсорбции; использование в качестве осадителя аммонийных солей или органики позволяет удалить посторонние ионы при прокаливании осадков и т.д.
Чистые крупнокристаллические осадки можно получить методом возникающих реактивов (осаждением из гомогенных растворов), когда реагент-осадитель не добавляется извне в раствор определяемого вещества, а образуется в нем за счет некой медленно текущей (несколько часов) реакции. Например, при осаждении кальция или бария делают сильно кислой среду их раствора. В сильно кислой среде осаждение по реакции
Ca2+ + Н2С2О4 СаС2О4 + 2Н+
не идет, так как в присутствии сильной кислоты слабая щавелевая не диссоциирует и не вступает в реакцию. В раствор добавляют медленно гидролизующиеся органические соединения (уротропин, карбамид или др.), которые при гидролизе медленно образуют аммиак, понижающий рН среды, вследствие чего медленно образуются кристаллы оксалатов.
Другой радикальный метод получения чистых осадков переосаждение, т.е. повторное осаждение после растворения полученного осадка.
Полноту осаждения проверяют в отбираемых пробах раствора или в отстоявшемся маточном растворе по отсутствию помутнения при прикапывании осадителя. Обычно для полного осаждения берут полуторный избыток осадителя по сравнению с предполагаемым количеством определяемого вещества.
Крупнокристаллические осадки отделяют от маточного раствора фильтрованием на стеклянных воронках через бумажные беззольные фильтры (фильтры, масса золы которых меньше 2·10-4 г, т.е. меньше чувствительности аналитических весов). Фильтрование крупнокристаллических осадков ведут на более плотных фильтрах, чем мелкокристаллических, забивающих поры фильтра. Плотность фильтров определяют по цвету ленты их опоясывающей или цвету маркировки коробки. Самые плотные с синей лентой, средние - с белой, наименее плотные - с красной. Отмывку осадков от примесей и маточного раствора проводят на фильтрах холодной дистиллированной водой (что понижает растворимость осадка) или промывной жидкостью, включающей электролит, подавляющий пептизацию осадка и (или) одноименный с определяемым ион, что по правилу растворимости тоже препятствует растворению осадка. Промывают многократно небольшими порциями, наливая воду или промывную жидкость на 0,5 см ниже края фильтра. Аморфные осадки отмывают декантацией непосредственно в химическом стакане, где их получали, а фильтруют через предварительно взвешенные пористодонные фарфоровые тигли Гуча или стеклянные фильтры Шотта под вакуумом.
Кристаллические осадки вместе с фильтром высушивают на воздухе, аккуратно свертывают и помещают в предварительно доведенный многократным прокаливанием до постоянной массы тигель. Фильтр с осадком озоляют в тигле на медленном огне горелки. Затем, если необходимо, прокаливают в муфельной печи, при этом фильтр сгорает. Аморфные осадки высушивают и прокаливают вместе с фильтром Шотта или в тигле Гуча. Массу тигля с осадком многократно чередующимся прокаливанием, охлаждением в эксикаторе (герметичной стеклянной емкости с веществом - осушителем на дне) и взвешиванием доводят до постоянной величины.
Часто после высушивания или прокаливания химический состав осадка изменяется, поэтому в ГМА различают осаждаемую и гравиметрическую формы осадка. Осаждаемая форма - это осадок с химическим составом, в виде которого его осаждают, а гравиметрическая - взвешивают. Осаждаемая форма должна быть практически нерастворимой, образовываться в виде крупных кристаллов и легко переходить в гравиметрическую. Гравиметрическая форма должна иметь постоянный известный химический состав, быть химически устойчивой, иметь возможно большую молярную массу при возможно меньшем вкладе в нее определяемого вещества, что уменьшает погрешность ГМА за счет погрешностей взвешивания или потерь осадка.
Содержание определяемого вещества X рассчитывают в граммах или процентах:
m(X) = F mгр. формы, г;
,
где mос - масса высушенного или прокаленного осадка, г; mнав - масса навески анализируемого вещества, г; F - аналитический (гравиметрический) фактор пересчета. F - выражает вклад молярной массы определяемого вещества в молярную массу гравиметрической формы. Например, при определении содержания железа в соединениях гравиметрическая форма имеет состав Fе2О3, следовательно, F(Fe / Fe2O3) будет равен
.
Гравиметрический фактор облегчает расчеты результатов гравиметрического анализа, так как для большинства веществ, определяемых данным методом, приведен в аналитических справочниках [12]. Например, с его помощью очень легко решается следующая задача:
Сколько граммов железа содержится в образце Fe3Al2Si3O12, если при его гравиметрическом определении измеренная масса гравиметрической формы Fe2O3 была равна 0,1000 г?
Решение.
Найдем соотношение молярных масс определяемого вещества (Fe), его гравиметрической формы (Fe2O3) и анализируемого образца (Fe3Al2Si3O12) по их химическим формулам:
В 2М(Fe3Al2Si3O12) содержится 3М(Fe2O3), но 6М(Fe).
Следовательно, F(Fe/Fe2O3) = 6М(Fe) / 3М(Fe2O3) = 0,6988, тогда
m(Fe) = 0,6988.0,1000 = 0,0699 г
ГМА точнее титриметрии, но длительнее и более трудоёмок, поэтому его используют в основном как арбитражный метод. Гравиметрические методы применяют для разделения веществ, анализа эталонов для ФХМА, определения состава синтезированных веществ.
Вспомним, что ионы-комплексообразователи характеризуются координационным числом, показывающим число атомов или атомных группировок, которые они могут связать (координировать), будучи центральным ионом в комплексном соединении. Наиболее часто координационное число равно 6 и 4, реже - 2. Лиганды характеризуются дентатностью (от лат. dentatus - зубчатый), т.е. способностью занимать определенное число координационных мест (связей) около центрального иона.