Новые научные направления современной химии и их прикладное использование
Рефераты >> Химия >> Новые научные направления современной химии и их прикладное использование

Однако кроме исследования поверхности, создание нового типа микроскопов открыло принципиально новый путь формирования элементов нанометровых размеров. Были получены уникальные результаты по перемещению атомов, их удалению и осаждению в заданную точку, а также локальной стимуляции химических процессов. С тех пор технология была значительно усовершенствована. Сегодня эти достижения используются в повседневной жизни: производство любых лазерных дисков, а тем более производство DVD невозможно без использования нанотехнических методов контроля.

Нанохимия - это синтез нанодисперсных веществ и материалов, регулирование химических превращений тел нанометрового размера, предотвращение химической деградации наноструктур, способы лечения болезней с использованием нанокристаллов.

Ниже перечислены направления исследований в нанохимии:

- разработка методов сборки крупных молекул из атомов с помощью наноманипуляторов;

- изучение внутримолекулярных перегруппировок атомов при механических, электрических и магнитных воздействиях. Синтез наноструктур в потоках сверхкритической жидкости; разработка способов направленной сборки с образованием фрактальных, каркасных, трубчатых и столбчатых наноструктур.

- разработка теории физико-химической эволюции ультрадисперсных веществ и наноструктур; создание способов предотвращения химической деградации наноструктур.

- получение новых нанокатализаторов для химической и нефтехимической промышленности; изучение механизма каталитических реакций на нанокристаллах.

- изучение механизмов нанокристаллизации в пористых средах в акустических полях; синтез наноструктур в биологических тканях; разработка способов лечения болезней путем формирования наноструктур в тканях с патологией.

- исследование явления самоорганизации в коллективах нанокристаллов; поиск новых способов пролонгирования стабилизации наноструктур химическими модификаторами.

Ожидаемым результатом будет функциональный ряд машин, обеспечивающий:

- методологию изучения внутримолекулярных перегруппировок при локальных воздействиях на молекулы.

- новые катализаторы для химической промышленности и лабораторной практики;

- оксидно-редкоземельные и ванадиевые нанокатализаторы с широким спектром действия.

- методологию предотвращения химической деградации технических наноструктур;

- методики прогноза химической деградации.

- нанолекарства для терапии и хирургии, препараты на основе гидроксиапатита для стоматологии;

- способ лечения онкологических заболеваний путем проведения внутриопухолевой нанокристаллизации и наложения акустического поля.

- методы создания наноструктур путем направленного агрегирования нанокристаллов;

- методики регулирования пространственной организации наноструктур.

- новые химические сенсоры с ультрадисперсной активной фазой; методы увеличения чувствительности сенсоров химическим модифицированием.

2.4 Фемтохимия

Фемтохимия исследует время движения реагирующих систем на потенциальной поверхности и вводит в химию экспериментальную химическую динамику как высшую, элитарную часть химической кинетики.

Освоение лазеров раздвинуло горизонты химии и обеспечило крупный прорыв в фемтохимию; это новая химия, детектирующая химические события в масштабе ультракоротких времён 10-15-10-14 с (1-10 фемтосекунд). Эти времена гораздо меньше периода колебаний атомов в молекулах (10-13-10-11 с). Благодаря такому соотношению времён фемтохимия «видит» саму химическую реакцию - как перемещаются во времени и в пространстве атомы, когда молекулы-реагенты преобразуются в молекулы продуктов.

В частности, фемтохимия занимается изучением переходного состояния химической реакции. Переходное состояние – это область межатомных расстояний, лежащая на пути от реагентов к продуктам, в которой система проходит через такие структуры, которые уже нельзя назвать реагентами, но ещё нельзя считать продуктами. Временная эволюция конфигурации атомов называется динамикой переходного состояния. Так как время пребывания молекулярной системы в переходном состоянии составляет всего порядка 100 фс, то до появления соответствующих инструментов исследователям приходилось восстанавливать его динамку, изучая кинетики реагентов и продуктов. Этих данных оказалось недостаточно для однозначного восстановления последовательности событий. Лишь с открытием в недавнем времени лазеров, изучающих ультракороткие импульсы длительностью 100 фс, появились новые экспериментальные возможности:

- при длительности импульса τ = 10-14 с и скорости атома v = 105 см/с детектируются изменения расстояний в молекулярной системе на 0.1 Å, что позволяет с хорошей точностью проследить временную эволюцию конфигурации ядер;

- Вследствие когерентности импульса возможно когерентное возбуждение нескольких колебательных или вращательных состояний молекулы с определёнными относительными фазами движения атомов.

Такой тип возбуждённых состояний называется когерентным ядерным волновым пакетом.

- При энергии 1 мкДж импульса длительностью τ = 10-14 с, пиковая мощность равна P = 100 МВт, поэтому можно легко осуществлять многофотонные процессы поглощения, получая высоковозбужденные молекулярные системы. Под действием таких импульсов на вещество генерируются импульсы света в широком спектральном диапазоне (суперконтинуум), рентгеновского излучения и электронов.

Этот крупный прорыв в современной химии открыл прямые пути исследования механизмов химических реакций, а значит, пути управления реакциями. Успехи, достигнутые при использовании фемтосекундных импульсов, привели к открытию другой науки - фемтобиологии. Особенности фемтосекундных импульсов позволяют: обеспечивать высокое временное разрешение, образовывать когерентные колебательно-вращательные волновые пакеты, легко осуществлять многофотонные процессы поглощения, воздействовать на поверхность потенциальной энергии (ППЭ) и т.д.

Основные направления этих новых областей исследований – это исследования детальных микроскопических химических и биологических процессов и управление ими на фемтосекундной шкале времени.

2.5 Синтез фуллеренов и нанотрубок

Фуллерены и нанотрубки — это об­ширные классы интереснейших нано­структур. Например, среди фуллере­нов известно множество частиц и изо­меров от малых (С20, С28) до гигант­ских (С240, С1840) с совершенно различ­ными свойствами. Получены многооболочечные фуллерены (углеродные «луковицы»), состоящие из нескольких вложенных друг в друга структур.

Синте­зированы фуллереновые полимеры, пленки, кристаллы (фуллериты), допированные кристаллы (фуллериды) как с собственными структурами, так и повторяющие строение обычных кри­сталлов. Например, фуллерен С28 име­ет ту же валентность, что и атом углерода, и образует устойчивый кристалл со структурой алмаза — гипералмаз. В последние годы обнаружено много молекул неорганических веществ (ок­сидов, дихалькогенидов металлов и прочих), по своей структуре подобных фуллеренам.

Из нанотру­бок получают очень интересные мате­риалы, например уникальной прочности нанобумагу: это плотные пленки из пе­реплетенных, подобно растительным во­локнам, жгутов нанотрубок. Недавно китайские специалисты научились прясть нанотрубки и получать таким образом углеродные нитки. Если вспомнить, что прочность нанотрубок в 50-100 раз больше, чем у стали, то становится понятно, что подобные изобретения человечеству весьма пригодят­ся. Найдены вполне реальные облас­ти применения нанотрубок — напри­мер, в плоских дисплеях (фирма «Mo­torola»), которые превосходят плаз­менные и жидкокристаллические ана­логи, и в нановесах, позволяющих взвесить объекты массой около 20 фемто-грамм (1 фг =10-15 г) - в час­тности, вирусы.


Страница: