Новые материалы на основе полимерных нанокомпозитов
Рефераты >> Химия >> Новые материалы на основе полимерных нанокомпозитов

Фазовая диаграмма для системы, состоящей из молекул матрицы с гибкими цепями и полимера с жесткими стержнями. Смешение этих компонентов приводит к микрофазному разделению, причем объемная доля изотропной фазы (1) резко снижена в области больших длин жестких стержней (Flory P.J., Abe A. // Macromolecule. 1978. V.11. P.1122).

Підпис:

В начале 80-х годов молекулярные композиты уже пытались получать, смешивая растворы жесткого и гибкого полимеров (например, полибензо-бис-тиазола и полибензимидазола в метансерной кислоте или полиамидимида и полиэфиримида в диметилацетамиде), которые образовывали тройную систему. Оказалось, что фазовое поведение полимерного раствора жестких стержнеобразных молекул и гибкой матрицы зависит от энтропии смешения. Если она неблагоприятна, происходит микрофазное разделение компонентов, резко уменьшается объемная доля изотропной фазы по мере увеличения длины жестких сегментов. В результате значительно снижается усиливающий эффект по сравнению с системами, в которых жесткие сегменты распределены по всему объему матрицы случайным образом.

Фазовое разделение можно подавить несколькими способами:

- включить в жесткую молекулу гибкие боковые группы, которые дополняли бы по химической структуре функциональные группы в гибком клубке. Это обеспечит благоприятную энтропию смешения и возникновение водородных связей между жесткими и гибкими сегментами;

- повысить энтропию смешения за счет использования близких по химической структуре компонентов;

- синтезировать материалы, в которых жесткие сегменты и гибкая матрица связаны химически.

Действительно, любой из этих способов повышает совместимость компонентов, создавая возможность для получения молекулярных композитов, но, на наш взгляд, последний наиболее перспективен. Именно третьим способом на основе полиимида и полиамида найлона-6 Ф.Харрис (Университет г.Акрон, США) синтезировал тройной блоксополимер.

Мы изучили структуру и свойства этого сополимера и выяснили, что единичный блок построен из ковалентно связанных, как в молекуле, трех фрагментов — центрального полиимидного с жесткими цепями и примыкающих к нему по краям гибких полиамидных цепей.

Единичный блок тройного сополимера, в центре которого находится полиимидный жесткий фрагмент, а по краям к нему примыкают гибкие полиамидные цепи.

Контролируемая в процессе синтеза масса полиимидного фрагмента в исследуемых образцах составляла 12Ч103г/моль, а степень полимеризации — 14—15. Длина имидной части макромолекулы в наиболее вытянутой конформации не превышала 35—40 нм. Масса же полиамидных элементов была много больше — около 105 г/моль. Механические и теплофизические свойства материала оказались улучшенными по сравнению со свойствами исходных полимеров. Это обеспечивалось особенностями его структуры, а именно совмещением полиамидных и жестких полиимидных фрагментов в аморфных областях.

Интерес к молекулярным композитам чрезвычайно велик, и работы ведутся по разным направлениям: подбору смесей, поиску сополимеров, созданию материалов на основе аморфных и жидкокристаллических полимеров.

Отметим еще одно важное направление (развиваемое в разных лабораториях, в том числе и в нашей) — синтез “умных” полимерных наноматериалов. В его основе лежит молекулярное распознавание и упорядочение составляющих элементов с последующей самосборкой функциональных надмолекулярных структур за счет слабых нековалентных взаимодействий — ван-дер-ваальсовых и электростатических сил, водородных связей и т.д.

В живом мире примеров подобной самоорганизации не перечесть, это и вирусы, и рибосомы, и белковые волокна, и мембраны, и ферментные комплексы. Все они не синтезируются целиком, а собираются из макромолекулярных субъединиц. Так, одинаковые белковые молекулы, взаимодействуя между собой за счет слабых сил, образуют геометрически регулярные структуры (спирали, кольца, гексагональные формы), которые упаковываются в плоские слои или трубки. Похожим образом можно реконструировать in vitro вирус табачной мозаики, просто смешав в растворе вирусные белок и РНК: сначала возникают белковые структуры в виде двойных колец, а затем они “нанизываются” на молекулу РНК. Так постепенно строится вирусная частица — длинный стержень, в котором спирально закрученная РНК заключена в цилиндр из одинаковых белковых молекул.

Можно было ожидать, что самоорганизация свойственна не только биополимерам, но и синтетическим макромолекулам. Эту идею удалось подтвердить В.Перчеку, который смоделировал процессы самосборки, характерные для вируса табачной мозаики. Однако он использовал в экспериментах не вирусный белок, а соединения на основе производных галиковой кислоты, имеющие жесткие секторообразные фрагменты в боковых цепях. С начала 90-х годов мы начали исследования этого же класса соединений и убедились, что некоторые из них способны к самосборке в надмолекулярные цилиндры, которые в свою очередь организуются или в двумерную упорядоченную, или неупорядоченную жидкокристаллическую колончатую фазу. Изучив температурное поведение этих надмолекулярных структур, мы определили основные этапы и условия их формирования. Исследования самоорганизующихся химических систем продолжаются и приносят интересные результаты.

Заметим, “умные” материалы чувствительны к разным внешним воздействиям — химическому составу окружающей среды, изменениям температуры и давления, электрического или магнитного поля и т.д. А значит, они могут найти широкое практическое применение.

Безусловно, нанокомпозитам принадлежит будущее, надеемся, скорое. Но современная надмолекулярная химия уже создает еще более совершенные материалы — молекулярные композиты.

4. Возможности нанотехнологий

Практическое воплощение перечисленных далее прогнозов ожидается в период до 2060 г., хотя с 2025 г. возможна и более ранняя реализация отдельных пунктов. Такие оценки выдвигает немалое количество экспертов. Пока их прогнозы продолжают весьма точно сбываться, и не видно причин, способных этим прогнозам помешать. Многое зависит, прежде всего, от доступности вычислительных ресурсов, необходимых для моделирования нанотехнологических процессов.

Возможности нанотехнологий, которые будут доступны человечеству через 50—60 лет, таковы:

программируемое позиционирование молекул с точностью 0,1 нм;

работа наноустройства с частотой 1 ГГц;

молекулярная сборка со скоростью 1 млн. операций в секунду на 1 наноустройство;

производство 1 кг произвольно заданного материала коллективом наноустройств за 2—3 часа;

промышленные системы, способные удваивать объемы производства каждые 10 000 секунд;


Страница: