Несимметричные сульфиды
2.2. Пространственно-затрудненные фенолы, как ингибиторы радикальных процессов в полимерах.
В качестве стабилизаторов могут быть использованы различные органические сульфиды, в том числе пространственно-затруднённые фенолы типа:
Пространственно-затрудненные фенолы (и получающиеся из них феноксильные радикалы) полностью удовлетворяют требованиям, предъявляемым к сильным антиоксидантам, и являются эффективными ингибиторами процессов окисления различных органических материалов. Подобные фенолы, как правило, реагируют с радикалами ROO•, прерывая цепь окисления.
Эффективность пространственно-затрудненных фенолов как ингибиторов окисления существенно зависит от их структуры. Определяющим фактором в этом случае является строение о-алкильных групп и характер пара-заместителя. Ниже приведено соотношение k2/k7, характеризующее эффективность некоторых пространственно-затрудненных фенолов при ингибированном окислении тетралина при 50°С.
k2/k7 | |
Фенол |
83 |
о-крезол |
522 |
2-трет.-бутилфенол |
787 |
2,6-ди-трет.-бутилфенол |
967 |
2,4,6-три-трет.-бутилфенол |
1413 |
4-метил-2,6-ди-трет.-бутилфенол |
1990 |
Введение в пара-положение молекулы пространственно-затрудненного фенола электрондонорных заместителей увеличивает его антиокислительную активность, а электронакцепторных - уменьшает:
Пара-заместитель: |
Относительная эффективность: |
- CH3 |
100 |
- C2H5 |
125 |
н-C4H9 |
140 |
- CH(CH3)C2H5 |
80 |
- C(CH3)3 |
36 |
Эффективность большинства стабилизаторов класса пространственно-затрудненных фенолов значительно повышается в композиции с веществами, разрушающими гидроперекиси и предотвращающими возможность вырожденного разветвления цепи окисления сульфидами, фосфитами, аминами, тиолами.
При использовании антиоксидантов помимо рассмотренных выше закономерностей, определяющих эффективность ингибитора, необходимо дополнительно учитывать следующие факторы: совместимость стабилизатора с защищаемым материалом, степень окрашивания полимера и особенности продукта его окисления, летучесть.
3. Методы получения органических сульфидов
Как стабилизаторы могут использоваться симметричные и несимметричные сульфиды.
Наиболее распространённым способом получения симметричных органических сульфидов является взаимодействие алкилгалогенидов с сульфидом натрия Na2S в органических растворителях. Более высокие выходы достигаются при использовании протонных (спирты: этиловый, изопропиловый и другие) или апротонных (диметилформамид) растворителях.
2 R–Hal + Na2S ® R–S–R + 2 NaHal
Когда R = R’, то получаются симметричные сульфиды. Получение несимметричных сульфидов можно осуществить взаимодействием тиолов с алкилгалогенидами в присутствии щелочей. Сначала образуется тиолят-анион:
R – SH + OH` ® R – S` + H2O
Далее возможны два варианта:
R – S` + R’ – Hal ® R – S – R’
или
R – Hal + R’ – S` ® R – S – R’
Выбор зависит от многих факторов.
Меркаптаны (алкантиолы), имеющие небольшую молекулярную массу, достаточно летучи (имеют отвратительный запах!), ядовиты и отсутствуют в продаже.
Для получения тиолов (меркаптанов) более эффективны и чаще используются в лабораторных условиях непрямые методы синтеза, с последующим разложением или восстановлением промежуточных продуктов. Из прямых синтезов наиболее доступным является нуклеофильного замещения атомов галогена на гидросульфид анион HS` . В лабораторных условиях из гидросульфидов с высоким выходом и хорошего качества получают гидросульфид аммония NH4HS.
Получение соответствующих алкилгалогенидов из спиртов в лабораторных условиях не представляет особой сложности.
4. Пути синтеза несимметричных сульфидов на основе 4-(g-хлорпропил)-2-трет.-бутилфенола.
Одним из перспективных направлений производства отечественных антиоксидантов до настоящего времени остаётся синтез полифункциональных пространственно-затруднённых фенолов на основе 4-(g-хлорпропил)-2-трет.-бутилфенола (g-пропанола, разработка НИОХ СО РАН). Среди промышленных фенольных антиоксидантов неплохо зарекомендовали себя метиленбисфенолы.
2,2’-метиленбис-[4-метил-6-трет.-бутилфенол] «антиоксидант 2246»
Для получения метиленбисфенолов применяют конденсацию 2,4-диалкилфенолов с формальдегидом в кислой среде:
4.1. Получение 4-(g-хлорпропил)-2-трет.-бутилфенола (хлорид Ф-13)
4-(g-хлорпропил)-2-трет.-бутилфенол удобнее получать деалкилированием 4 – (g-хлорпропил)-2,6-ди-трет.-бутилфенола, синтез которого хорошо отработан на кафедре химии НГПУ взаимодействием 4-(g-гидроксопропил)-2,6-ди-трет.-бутилфенола с хлорангидридами неорганических кислот: SOCl2, POCl, POCl3, PCl5 и COCl2.
В качестве катализатора используют минеральные кислоты (H2SO4, HClO4) или КУ-2 (катионно-обменная смола, Н-форма). Процесс ведут до почти полной конверсии исходного хлорида Ф-17, так как эффективного метода очистки целевого хлорида Ф-13 от остатков хлорида Ф-17 не существует. Хлорид Ф-9 хорошо растворяется в щелочах и его отмывают 5%-ным раствором гидроксида натрия NaOH. Продукт перегоняют под вакуумом (ост. давление 1-2 мм рт. ст.). Потери, за счёт протекания побочного процесса деалкилирования хлорида Ф-13 и образования хлорида Ф-9, составляют не менее 30%.Полученный хлорид Ф-13 (4-(g-хлорпропил)-2-трет.-бутилфенол) конденсируют с параформом в течении двух часов при 80°С (растворитель: уксусная кислота). Выход 70% от теоретического. Хлорид Ф-13 (4-(g-хлорпропил)-2-трет.-бутилфенол) используется как сырье при получении 4-(g-меркаптопропил)-2-трет.-бутилфенола и 2,2’метилен-бис-[4-(g-меркаптопропил)-6-трет.-бутилфенола].